AD-A115 61% AIR FORCE INST OF TECH WRIGHT~PATTERSON AFB OH SCHO0=-ETC F/6 9/2
DESIGN AND DEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F==ETC(U)
DEC 81 M S ROSS

UNCLASSIFIED AFIT/GCS/EE/81D-14

S T TDEIS

R

i
i
-

AFIT/GCS/EE/81D-14 ‘

Y
» v

Design and Developmeht
of a
Multiprogramming Operating System
for
Sixteen Bit Microprocessors

THESIS

! AFIT/GCS/EE/81D~14 Mitchell S. Ross
Captain USA

m
r
m
0
|
i

ahd s 4

Approved for public release; distribution unlimited.

AFIT/GCS/EE/81D~14

Design and Development
of a
Multiprogramming Operating System
for

3 Sixteen Bit Microprocessors
THESIS
Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

: o
PR W

| Requirements of the Degree of

;. | Master of Science r_Aﬁ?,,e,sf““ For ‘
i NTIS GRA&I
; § DTIC TAB
3 ; Unannounced O
7‘ Justification__
' by By
) | Distribution/

Mitchell S. Ross, B. S. Availability Codes

: Captain USA jAvail and/or
Dist | Special
Graduate Computer Systems
December 1981 ﬁ

Approved for public release; distribution unlimited. -

Preface

R e

This thesis presents a design of an operating system
for the Digital Engineering Laboratory. My desire is ¢to
provide a starting point for follow-on efforts and
implementation. The design is based on l6~bit
f{ microprocessors and the development uses structured analysis
as a software engineering technique. I have intentionly

been broad in my approach so that future studies have the

S i

flexibility to adapt this effort to their educational
objectives.

I would like to express my appreciation to Dr, Gary B.
Lamont, who as my research advisor gave me valuable
guidance. T would also like to thank my thesis readers,
- Captain Roie Black and Captain Richard Conn, for their

advice and assistance in improving the <clarity of this

thesis. In addition, I am grateful to the faculty members
who provide instruction at the Air Force 1Institute of

Technology and contributed to my education and understanding

of Computer Science.
Finally, I wish to thank my wife, Cheryl, for her

tolerance and encouragement during my graduate studies.

Mitchell S. Ross

ii

i

i A3 il BBV, 24 i - i
’

Preface L] - L] . -] . [] [] . L] . - L] [] - L] [] [] L] - L] * [2 ii
List of FigurG‘F - '] .) . . Vi
List of Tables .« . ¢ & ¢ ¢ ¢ ¢ o o o o o o o o o o o o viii

AbstraCt - - . . . L] . . L] . . 3 L] . 3 L] . . [} ix .]

I. Scope Of Project o o o o o o ¢ o o o o o s o o o o 1
Introduction . . s s e e e s e e a e o e+ s o]l
Historical Perspect1ve « s e e o e o s e s o a 2
Objectives . ¢ 4 ¢ ¢ ¢ ¢« o o o o o o o o o o o 6
Approach e o s % & s & + a2 e o e e s & o o 7
Overview of TheSis . . ¢ o o« ¢« ¢ ¢ o« o « o o & 8

II. Design Methodology e e o o o s 6 s s s 8 s s e 10

Introduction o o o

The Nature of Operatlng Systems « ¢« ¢« ¢ o ¢ . . 19
Design Objectives . . . v 4o ¢ ¢ o o o o o o o o 12
Design Approaches . . o o ¢ ¢ ¢ o o o o o o o & 13
Language Considerations . « « ¢« ¢« ¢ ¢ « ¢ « o o 18
Conclusion . . & ¢ 4 ¢ o o o ¢ o o 0 o o o o o 20

| III. Functional Requirements ¢ « ¢ o o o o & & 22 1

k|
Introduction . ¢ ¢« & ¢ ¢ ¢ ¢ 4 ¢ ¢ 4 o o o s 22
Background . . . ¢ o ¢ o o o o o o o o o o s 23
"User Friendliness” . . ¢ o « o o o ¢ o o o « o 25
Command Language. + o« o o s o s o ¢ o o o o o o 28
Arguments . . ¢ o o o o o o o o o + s & o 29 '
Prompts & & ¢ ¢ ¢ ¢ ¢ o s e o o o a4 s o o @ 31
On—Line Documentation ' 32
Error MeSSagesS . o + « o o o o o o ¢ s o o » 32
RECOVEIY & o 4 o o o o o o o o 2 s o o o o o = 33
Flles Systemn e o ® o & & e * o e * o o e o 34 3
‘ Application Packages s o o s e e o s v e e o 37
! Response or Feedback . . « ¢ ¢« ¢ ¢ ¢ o o ¢ o & 38
' StOtage Size * o . . e o o e s o * e . . ¢ o o 39
? Media L] L] [] L] L] L] L L] L] L L] L] * L] L] . . 40
, Ease of Imp11mentation e 4 s e s s e v e e o o 40 ¥
. Ease of Learning . . & ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ o o 41
' CO“CIUSion L] L[] L] L] L] . . L L] * . L] * L] L] L] [] L] 41

iii

QR S < et SR Al s 0 e 0 4 s
-

i
;
)

IV, System Requirements . . . ¢« ¢ ¢ ¢ o o o o o o o o 43

INtroduction .« ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o s ¢ o o o o o 43

~ Hardware Requirements . . « ¢ ¢ ¢ o ¢ o ¢ o « & 43
Interrupt Hardware . . « « o o o o o o o o 44
Timer Mechanism . . & ¢ & ¢ ¢ ¢ o ¢ o o o & 44
Storage Protection Capability. . . . « « . . 45
Direct Access Secondary Storage. . « « o o« o 45
Structured Specification of Software
Requirements ., . . . e o o o s s e o o o o @ 45
Operating System Dlagram € o e ¢ o 2 e s e o @ 48 .
Files Management . « . « « « « « o « o« « o o« « 54 }
Input/Output Management . o« « + o o o o o s o 63

Device Handlers . . o« « o o o o o s o o s o 66
Transfer Of FilesS , ¢« ¢ ¢« o o o o o o s o o 69

The Scheduler - L] L] L] * L] . L] L L] . L] . * - - L d 70
Memory Management . o« o « o o o o o o o ¢ o o o 79
Nucleus Requirements . . ¢ . ¢ & ¢ ¢ o o o o & 83

Dispatcher Requirements . . « ¢ ¢ ¢ o ¢ o & 85
Interprocess Communications . . « ¢« « ¢« o & 87
Interrupt Handler . . ¢ ¢ o o ¢ o o o o o 89

Summa ry [] . . . [. o 3 L] . . e .] . 9 2

V. Operating System Design . . ¢ & ¢« ¢ ¢ ¢ o o o o & 94

Introduction. . +« ¢« 4 o« ¢ ¢ ¢ ¢ & o o o o s o o 94 4
Hardware Design e s e s s s e o s s 94]
Memory Management Hardware e 4 e s 6 o o o o e 96
Timer Mechanism e o s 6 s s e s e o 99
Software Design Speciflcatlon © e o e o o 8 s s 99

Structure Charts . . « ¢« ¢« ¢« ¢ ¢ &« « o s « « 100
Transform Centered Design and
Transaction Analysis . « + « o ¢ o« ¢« ¢« o « o 101

Interprocess Communications . . . + + « « « » « 104
Scheduling Management . . . « « &+ « « o o« o + o 105
Input/Output Management . « « « ¢« ¢« « ¢« o« o« « « 106
summa ry L] L] L] . * L] L] L] L] L] . * L] L] L] L] L] . L4 [4] 07

VI. Conclusions and Recommendations « « « « 108
Recommendations . . ¢« ¢ ¢« ¢ ¢ ¢ o ¢ o« ¢ o« & « « 109
Bibliography . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o o o o 112

Appendix A: Rationale for Timesharing and
Multiprogramming . . « ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o 117

iv

3 ' ; Appendix B: Man-Machine Interface Issues . . « « « « o 127

é : Appendix C: Computing System Environments « 136

{ Appendix D: Hardware Configqguration 144
Appendix E: Structured Specification . . . « ¢« ¢« o o o 147

3 Appendix F: Module Structure Charts . . . « « « o « o 252

1 Vitd & ¢ v 6 o o o o o o o o o 4 o o s s e o o o o o « 280

!

:

2

!

f

-

-

8 O e A s e O IR Tt A & Wgn 1 4

JE——

L oKy i il M S Ml S v e AR e e A A AN i b Bl AR

List of Figures

Figure

1

S W M N U e W N

NN N NN RN e e e e ke e e
M e W NN O W oSNy Y e W

Evolution of Operating Systems .
THE Operating System Hierarchy .
Hansen's Multiprogramming Nucleus
Command Language Interface . . .
UNIX File System Implementation .
Data Flow Diagram Symbols
Operating System Context Diagram
Operating System Shell Diagqram .,
Execute System Command
Execute Control Command
Execute Help Command . . . « .
Execute User Command . ., . .« . .
File Management Context Diagram .
?ile Management Overview
Execute Open File . . + « + « .+
Allocate File Space . « . . « . .
Execute Link Files

Create File Descriptor.

Close File L] . . .

Input/Output Management Context Diagram

Input/Output Management Overview
Initiate Input/Output Request . .

Execute Device Handler

Schedule Management Context Djiagram

Schedule Management Overview . .

vi

Page

15
16
29
36
46
47
49
50
51
52
54
55
57
58
59
60
61
62
63
66
67
68
70
72

o=~ v RS

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
45
46
47
48

Create FIOCESS o« o o o o o o
Execute Scheduler . . « . .« .+ &
Determine Process Status . . .
Determine Running Process . . .
Enter Processor Queues

Swap Process . . « « ¢ o o o o

Memory Management Context Diagram

Memory Management Overview. . .
Select Free Area . . + « + « &
Deallocate File Space
Nucleus Context Diagram
Nucleus Overview Diagram ., . .
Dispatch Process . . ¢« « + « &
Interprocess Communication . .
Lock and Unlock T e e e e e e
Save and Restore CPU State . .
Interrupt Handler . . « « « « &
Interaction of Nested Interrupts
Memory Addressing and Protection
Structure Chart Notation ., . .
Transform Centered Design . . .

Input/Output Data Structure . .

vii

. 74
. 75
. 76
. 77
. 78
. 79
. 81
. 82
. 83
. 84
. 85
. 86
. 88
. 89
. 90
. 91
. 95
. 98
. 100
. 102
. 106

UNIX File Access Convention
Operating System Layers .
Operating System Shell .
File Management
Input/Output Management

Scheduling Management ,

Memory Management'; «

Nucleus Composition . .

Ahstract

A timesharing operating system for the Air Force

Tnetitute of Technology Digital Engineering Laboratory was
designed and developed with emphasis on the human interface.
The functional requirements were developed by a thorough
literature search on the user perceptions of computer
operating systems‘ and the justification for the success of
popular systems such as UMIX, TENEX, and UCSD Pascal.
Structured Analysis was used to produce a structured
specification for the hierarchy of the operating system.
The structured specification includes an operating system
shell which allows a flexible user command structure, a
hierarchical file structure, device independent input/output
management, a scheduler which supports swapping, a general
memory management scheme, and a system nucleus consisting of
process dispatching, interrupt handling and interprocess
communications. Weinberg's methodology, which is based on
Yourdon and Constantine's Transform Analysis and Transaction
Analysis Techniques, was used to develop the software design
which consists of a set of module structure charts. The
module structure charts are supported by data flow diagrams
and a data dlctlonar{%\\

Because of the depth needed to complete such a project,
this first effort is intended to provide a basis for further
expansion and development. Hence, the design is a broad
overall approach aimed at 16-bit microprocessors and not

detailed sufficiently for full implementation.

o ARl &

e

PRSI - ..

1. Scope of Project

Introduction

The purpose of this investigation 1is to develop a
multi-user, multiprogramming operating system for the
Digital Engineering Laboratory (DEL) at the Air Force
Institute of Technology's School of Engineering. This
operating system can be based on the architecture of Intel
Corporation's 8086 Microprocessor, Introduced in 1978, the
80 86 was one of the first 16-bit bhigh performance
microprocessors.

In some respects, the 8~bit microprocessors have been
strained to perform tasks easily handled by more advanced
architectures. With the advent of a new <class of 16-bit
microprocessors, interest 1is increasing in applying these
machines to more complex computing problems (Ref. 32: 62).
Software for these 16-bit microprocessors has just recently
drawn widespread interest (Ref. 49), If contemporary
software is to keep pace with more sophisticated
applications such as advanced gfaphics, access to huge
information banks, and addressing large main memories, then
1l6-bit operation is the solution, The operating systems for
these new architectures take on a new importance.

The operating system is the view of the computer system
from the user's stand-point. The user "sees" and "talks" to

the computer through the operating system. Its function is

to transform a hardware environment, with a low level of

ALK - TAT 0 AR s JoM it st ot 4 d =i a7 s et R S NG TN Gl ol 4~ R ST P SR SO, v, e DI e

e

execution, to an abstract machine, with a high level of

to interface in terms understandable to the user

execution,

(Ref., 5: 1046).,

Historical Perspective

The history of operating systenm developments is

difficult ¢to present since many concepts were introduced

long before they were generally accepted and implemented.

The concepts of virtual storage and paging were demonstrated

‘j in the Atlas system more than a decade before they were

formally documented as an integral part of IBM's main line

operating system in 1972 (Ref. 44). The early computer

systems such as ENIAC in 1946 had no operating system at

all. Each operator programmed the computer personnally

storage locations

using machine code, examining individual

and loading decks.

As the expense .and speed of computers increased,

executive programs were created to allow several users to

sequence their Jjobs in a "batch" fashion. This prevented

the computer from sitting idle while jobs were loaded

An executive

manually, thus wasting costly computer time.

might also have included input/ouput control services

(I0CS), run time limits, and system accounting.

In the mid-1960's as CPU speed increased, input/output

caused a severe bottleneck in the system. Multiprogramming

was developed as a technique to improve efficiency by

overlapping input/output operations with CPU processing,

thus keeping the processor and input/output devices well

utilized. The basic technique is to have several jobs in
memory at one time. A job executes until an input/output
device is required, then it is suspended and another job is
executed, This technique worked well as long as a good mix
of computation and input/output existed in the jobs. Soon
it was realized that multiprogramming could be forced by
using timed interrrupts to switch from one 3job to another
(preemptive scheduling). ©Each job was given a specific
amount of time to run, such as 100ms, at which time it was
interrupted by a timer. The operating system would run a
job until it was interrupted or input/output was required,

then the next job was executed, etc. Appendix A contains a

more detailed examination of multiprogramming and its
efficiency.
Timesharing became common to most 1large operating

systems and created a new world of interactive terminals in

the early 1970's (Ref. 45). All input and the majority of
the output goes directly to and from the wuser, thus
E‘ eliminating most of the electro-mechanics of card and tape
readers, To minimize response time (an important
requirement for timesharing operating systems) these systems
| relied heavily on multiprogramming and preemptive scheduling
techiques. Timesharing is also refered to as "interactive"
or "conversational" computing,

As the number and variety of users increased, it became

evident that "software packages" were required to meet users

needs. These packages were not part of the operating system

L.,,‘,,_,,, st N - —— J

(&)

e e caa

- e A

1985
XENIX (16-bit)
1980
UCSD Pascal (PDP-11) 1975
CP/M (8080) 1974
UNIX (PDP-7) 1972 Virtual machines
' Virtual storage
1970
1968
1966 Information managers
MULTICS (GE 645) and Timesharing
0S/MVT (IBM 360) 1964 Mul tiprogramming
CTSS (IBM 7094) 1962
Executive systems
1960
1958 Batch processing
1956
Processing job by job
IBM 650 1953
IBM 701 1952
UNIVAC I 1951
ENIAC 1946 No operating systems

Figure 1. FEvolution of Operating Systems

but were tools for the user just as the operating system was
a tool to manage system resources. Fxamples of software
packages are compilers, editors, applications programs,
subroutine 1libraries, and wutilitary routines. Also, the

coming of data processing and large data banks influenced

the development of file management modules and information

management facilities.

In 1972, 1Intel Corporation presented the 8008
microprocessor, This was the first commercially available
8-bit microprocessor and its development 1led to the 8080
8-bit microprosessor which became an industry standard. The
8080 microprocessor is largely responsible for the boom of
computer hobbyists, economical industrial applications, and
the minicomputer explosion. A microprocessor revolution
took place that bhas yet to subside. A multitude of
applications were discovered and developed due to the
capabilities and availability of the microprocessor.

In 1974, Microcomputer Applications Associates (MAA)
proposed a single user operating system as a companion to
the 8080 microprocessor, CP/M (Control Program for
Microcomputers) was a single user operating system that has
been widely accepted. It is actually a very general
operating system which becomes a special purpose system when
it is "field-programmed"” to match a particular operating
environment. cp/M is now used in over 200,000
installations worldwide in over 3000 different hardware
configurations (Ref. 26: 226).,

Bell Laboratories, in 1971, developed UNIX, a powerful
multiuser timesharing system with a vast array of software
utilities which greatly increased productivity (Ref. 43) ,
The increasing cost of software has made systems such as

UNIX an attractive operating system not only as a

14: 252).

switches,

operating systems

microprocessor.

operating system, Given

development of a system

architecture would draw

implementations and current

Objectives

design

based on current design

system theory. The design

type of peripheral devices,

‘ productivity tool, but also because of its ease of use,
simplicity, and elegant design.,
UNIX or a UNIX-like operating system, such as XENIX, will

become the standard system configuration in the future (Ref.

So the evolution of computer operating systems has come
from simple, single resource managers to wide-spread
standards such as CP/M and UNIX which allow the user to
communicate in a more "human" way than merely toggling 3
The standards set by these and other successful

provide a foundation to build on for the

development of an operating system for the 1Intel 8086

Existing operating systems such as UNIX

provide a basis for the design and development of this

on past achievements of system

The objective of this investigation is to
a multiuser, multiprogramming operating system for a

class of 16-bit microprocessors.

capabilities and 1limitations of the 8086 architecture.

Consideration will be given to the number of intended users,

The current thought is that

this historical perspective, the

using the 8086 microprocessor

design methodology.

develop and

The development is to be

methodology and modern operating

will then be applied to the

and efficient wutilization of

computer resources in the selection of all algorithms. A

foremost consideration will be the ease of use of the system
and user/machine interaction. As in the development of
UNIX, simplicity will be substituted for efficiency wherever

possible (Ref. 54: 1932).

Approach
As with any in-depth study, a thorough literature

search was conducted to gain a working knowledge of
operating systems and current philosophy and methodology of
their design, development, and implementation. Several
successful and well known operating systems were studied to
compare existing systems to the objectives of the system
under design for the 8086 microprocessor.

The design of operating systems has not reached a level
where there is a recognized standard approach to design.,
However, an operating system can be viewed as a large
software system and approaches to engineering software
systems are prevalent. These methods will be exercised to
formulate the approach to software design. Chapter Two
covers the design methodology in more detail.

A top down structured approach to the design was
selected because of the amount of software involved. By
using this approach, the system, as viewed by the user, will
be addressed first. This will insure the user requirements
are met and a primary objective of "user friendliness" will

be foremost in design. Fach level and modularity within

levels will be developed and interfaced as well. In this

A BB i e

t
E
‘

|

type of design, it is important to clearly define interfaces
between levels to maintain modularity and proper hierarchial
levels,

Since the operating system can be expected to be a
large software effort, structured analysis design techniques
are considered important to the success of the project.
This involves such methods as graphic tools, logic modules,
top down approach to design and implementation, and giving
proper consideration to the user's point of view. This
method produces a more efficient design and implementation
(Ref. 57, 59).

Because the hardware 1is relatively fixed to the
available 8086 microprocessor configuration in the
laboratory, little emphasis was placed on the study of
hardware design except as it pertained directly to the 8086
architecture. Appendix C briefly covers the hardware

configuration and capabilities.

Overview of Thesis
The organization of the thesis follows the approach

used in developing the operating system, Chapter One
provides a brief insite to the historical importance and
evolution of operating systems. Appendix A provides more
information as to the importance of multiprogramming and
timesharing to software productivity. Chapter Two examines
the possible approaches to operating system design based on
principles used in the past and more current software

engineering techniques.

Chapter Three establishes functional requirements,
concentrating on the man-machine interface. Appendix B
provides additional material on research into the
man-machine interface and how it affects the user’'s
perception of the machine, It is basically a correlation of
research on the "friendliness"” of operating systems.

Chapter Four focuses on the system requirements of the
operating system. Data flow diagrams are used to express
the software requirements and support the narrative.
Appendix D gives a brief description of the hardware system
and its capabilities.

The design is developed in Chapter Five., Structure
charts are constructed from requirements and data flow
diagrams of Chapter Four. Throughout the design, structured
analysis 1is used to provide a layered approach to the
operating system development, |

Finally, in Chaper Six, a summary of the effort is

given and recommendations are made for future development.

II. Design Methodoloagy

Introduction

Modern computing systems are a complex collection of
coded routines, processors, input/output devices, and data
bases capable of a large amount of interaction, A system of
this complexity cannot be developed and designed without the
use of an adequate design technique. Some method must be
utilized to structure and decompose the system into
understandable components focusing on specific interactions.

The purpose of this chapter is to study the available
design methods for developing operating systems and to
select and develop the techniques to be used for the

operating system under development.

The Nature of Operating Systems

Many fundamental techniques of software engineering

have come out of the design and development of operating
systems., The reason for this is that the operating system
is wususally the largest and first program developed for a
given computer system, It is also the most 1logically
complex softvare effort for any given system. The
complexity is increased by the variety of inputs the
operating system must accept and its exposure to penetration
attempts. It must run continuously despite all efforts to
make it fail. Unlike an applications program, an operating
system cannot quit for diagnostics or abort for error

conditions.

The complexity of operating systems is caused by
conditions associated with the sharing of computer resources
and current processes, Three of the most troublesome issues
to consider during design are mutual exclusion, deadlock,
and process syncronization and communication.

Since several processes are executing concurrently, two
processes may attempt to use the same resource at the same
time. Mutual exclusion prohibits more than one process from
using the same resourcé. This is usually accomplished by
declaring the unsharable resource a "critical section" (Ref.
62: 55).

Deadlock ocurrs when processess are . waiting on each
other to satisfy a condition one of the processes must
resolve, This situation, called "circular waiting", (Ref.
16: 122) means the processes will wait forever. There are
three design approaches identified for dealing with deadlock
(Ref. 7: 46).

Syncronization and communication mechanisms between
processes must be designed into the system because sharing
resources requires coordination of processes in time (Ref.
31: 247), It is important to realize these same mechanisms
may be used for solutions to deadlock and mutual exclusion.
Several authors present different design methods for
sycronization‘and communication of processes, most notibly

Ref. 8, 16, 31, 51, 54.

Considering these conditions, the operating system

requires a powerful design technique if the system is

T T S T

B R LT T

expected to survive in this type of environment. If the
operating system is slow, inefficient, or fails, then the
applications packages follow suite, The operating system
must be considered as the abstract machine upon which all
other software functions.

The function of the operating system is to transform a
hardware environment, with a very low level of execution, to
an abstract machine, with a high level of execution, that
will interface in termé comprehensible to the human user
(Ref. 5). It must also interface with the software "users"”

such as compilers, data bases, and applications programs.

Design Objectives

Design objectives will vary considerably from system
to system but there are general objectives that should be
adhered to. One important reason for sharing the use of a
computer is to make efficient use of its resources, and this
should therefore be a primary objective of the operating
system, Rowever, in the process, the operating system
overhead should not absorb too much of the same resources.

Another objective 1is reliability. Because of the
number of users on a timesharing system, failure would be
more disastrous than on a dedicated system. Also,
correcthess of the software system is crucial, The system
must be predictable to the user even though the user may
make unpredictable demands on the system.

Simplicity of design, implementation and use must be an

issue in the design of an operating system. Without

12

ey T

; simplicity a complete understanding of the system cannot be

achieved and thus, complete control cannot be exercised over

ot

the system. To some degree these objectives are
incompatible and it may be more important that they are not

neglected rather than one is accomplished at the expense of

o
f.
‘L.

the others. How well the designer is able to fulfil each
objective will determine the success of the operating system

design.

Design Approaches

3 The operating system can be viewed from three

) perspectives (Ref, 31: 8-20). The "process view" reduces

Rithod

the system to a series of user and system processes, The
"resource view" consists of reducing the system to a network
of processes that require resources, The "hierarchical

i view" consists " reducing the system to a series of nested

& machines where the outer most levels are dependent on the
; inner levels for execution.

{; The view used depends on which concept of the system is
% under study. The resource view is most useful when
r. considering the wutilization of system resources., The rate
at which processes require resources and the rate required
;! to service the process are analogous to random variables
associated with a queue. The process view is most useful
when considering the facilities provided to the user. Each

process is determined by a procedure and a set of data with

| an initial state and a sequence of execution. The

hierarchical view is most useful when dealing with the

13

I e Ml : MR o il e GRS N e

functional aspects of an operating system. All three are
considered at some point during the development of an
operating system, The hierarchical view is the most useful

to the system designer, In this manner, the designer can

view the system from the user to the hardware for a top-down

perspective and design approach.

Dijkstra was the first to formalize the concept of an
operating system design based on a hierarchic structure

(Ref. 9). His approach forms the operating system

processes into a hierarchy where each level represents a
successively more abstract machine then the preceding level,

as shown in Figure 2. As a process moves up the hierarchy

more resource management tasks are performed. Processes at
one level can assume the availability of resources managed
Sy processes at lower levels, His design is called the
"THE" operating system and is the classic hierarchical
operating system design.

In Dijkstra's system, 1level 0 1is dedicated to the
processor dispatching primitives and is available to higher
levels. Level 1 virtualizes the memory by providing the
page and segment management algorithms, Levels 0 and 1 can

be referred to as a resident nucleus. Level 2 provides the

virtualization of the operator console. Level 3 includes
all the routines for the management ot the peripheral
devices. The ordinary user processes are at level 4 and the
operator processes at level 5.

The abstract machine presented by the hierarchical

¥l

RSSO, NP R B Y

ot wna.

Operator Processes LEVEL 5

User Processes LEVEL 4

Input/Output Management LEVEL 3

Console Virtualization LEVEL 2

Memory Virtualization LEVEL 1

CPU Virtualization LEVEL 0
Hardware

Figure 2. THE operating system hierarchy

methodology is attractive to system designers. Ry isolating
operating system functions on an hierarchical level basis
and establishing well-defined communication between levels,
the complexity of design is considerably reduced. Dijkstra
claims the system can be proven logically correct before
implementation (Ref. 9: 342).

Another methodology, developed by Hansen, uses a
bottom-up approach to design (Ref. 15), His design is

concentrated on a multiprogramming nucleus that is general

15

< S e M, NSO A — AR Mom et i — Ok A - i e . R S R T T

enough to permit the construction of a variety of operating
systems around the nucleus, as shown 1in Figure 3. The
nucleus can be extended to new operating systems in an

ordering fashion. Thus, the design is not 1limited to one

application.

The ideas developed by Dijkstra and Hansen are classic
examples of operating system design. Since their
development, other techniques such as structured analysis

P+ (Ref . 57, 59) and its related software tools (i.e.

information hiding, modularity, structured programming, data
ﬁ flow diagrams) have contributed significantly to operating
{; system design (Ref. 5).

Hierarchical design, whether top-down 1like Dijkstra's

approach or bottom-up like Hansen's approach, uses the

general nucleus nucleus
process A
operating
process B ~ system
process C
operating process D ° °
system ;
process E j
e O OO
process G

Figure 3. Hansen's multiprogramming nucleus.

;| 16

' ?

|
- '
i
§
_l
f)

kb R

concepts of partitioning, information hiding, and modularity
to clarify the system at several levels. Fach level becomes
more refined until a level is reached where the degree of
understanding is sufficient for the design to be easily
understood and implemented.

The structured analysis approach (Ref. 57, 59) is
similar because it uses graphic tools to represent levels of
hierarchy and partitioning. Further, software tools, such
as structured English and data dictionaries, allow a smooth
transition from requirements to design to implementation.
This permits an orderly approach rather than the designer
being overwhelmed with a volume of details.

The approach Shaw suggests (Ref. 51: 107) 1is not
unlike the structured analysis or hierarchical methods. He
claims the design of operating systems is, however, not a
rigid science, It 1is part science, part art, part
engineering and part management. The five design steps he

suggests are:

(1) Specify the virtual machine requirements.

(2) Describe the paths of processes through the
system (determine what the system does before
deciding how it does it).

(3) Determine the processes required to perform the
tasks specified by 1 and 2; specify interaction
and data structures.

(4) Specify allocation algorithms and stategies of
the nucleus,

(5) Prove the correctness of the design and predict
its behavior,

Step 5 1is probably the most difficult to accomplish.

However, the overall approach has several similarities to

structured analysis.

17

Brovme (Tef. 5) provides one of the best references
and kiblicgrarbiecs on the intersection of operating system
design methodnlogy and software engineering techniques.,
Several desicn issues are discussed aé well as more specific

exerples and recearch sources,

L.anguage Considerations

Understandably, language issues are more a part of
implementation than requirements definition or design.
Powever, experiences with successful systems have indicated
that language choice has a strong impact on the system early
in the design (Ref. 39 and 54).

Many large computer systems spend the majority of their
time executing applications programs. It is usually the
case that these applications programs are written in a
higher order language. However, the software systems that
provide the basic support for these packages (i.e.
compilers, operating systems, etc.) are often coded in
assembly language., When program size or execution speed 1is
more important than software development efficiency,
assembly language is required. However, when programmer
productivity is required, higher 1level languages are the
answer even though they are 1less efficient in speed and
storage requirements than assembly langquage.

At one time the use of assembly languages could be
justified by expensive hardware and inexpensive software,
Also, there may have been a lack of appropriate languages to

support the programming environment. Today, there are a

18

i T i e s N sl B 0 N 115 T S i, RIS s i i s

-

number of higher order 1languages capable of expressing
complex algorithms well and hardware is inexpensive while
the price of software has soared,

Several examples exist of higher order languages being
used where assembly language was once thought to be the best
alternative. Two of the best known examples are UCSD Pascal
(Ref. 39) and UNIX (Ref. 54) written in Pascal and the C
language, respectively. The authors of UCSD Pascal claim
Pascal was chosen as the.implementation language because of
its "ease and power" of implementation. The authors of UNIX
preferred the use of a higher order 1language because the
benefits derived far exceeded the costs. An operating
system foundation developed by Intel Corporation called RMX
was written in PLM (Ref. 24). The developers of RMX
compare the use of a higher order 1language instead of
assembly language to the hardware designer's use of LSI
devices instead of TTL components.

The benefits of writing an operating system in a higher
level language can exceed the cost of storage reguirements
and efficiency loss. Two cost benefits are less maintenance
and reduced development time. It seems the best approach to
the operating system is to develop the software in a higher
order language. Then, if necessary, use assembly language
to optimize the required portion of code to gain the speed
and minimize the storage needed.

If portability is an issue, the use of a higher order

language 1is essential, UNIX and UCSD Pascal have been

19

*

g ¥ b = . » o e
BT O, SN AP wA ST T L

NI RS R A WERA AR L) e e g L s

implemented on numerous architectures with only a small
portion of the system rewrittten (Ref. 23, 39). Since
assembly level languages are, for the most part, heavily
dependent on the architecture of the machine, portability is
limited to a certain class of processors if the entire
system is coded in assembly level code. A good example of
this is CPM which is 1limited to 8080 and 1280 type
architectures.

PLM is a high order ianguage vhich provides access to
the microprocessor hardware, It supports absolute
addressing, interrupt handling, direct port input/output,
and a reentrant attribute for procedures. PLM-86 would be a
good choice to implement the operating system for an 8086
based computer,

Conclusion

It is generally agreed that the operating system is the
most logically complex software developed for a computer
system. Multiprogramming and timesharing capabilities add
considerably more to the complexity. In fact,
multiprogramming introduces all the complexities of
multiprocessing except resolution of race conditions (Ref.
5: 1046). Reentrant coding, deadlock, synchronization,
mutual exclusion, sharing, scheduling and concurrency are
some of the major issues confronting the operating system.
Dealing which each of these is a design issue,

The reseach of Dijkstra, Hansen and others present

tried and tested methods for operating system requirements

20

o Ve M g WD WAL R AL

and design. Because of their work, the complexity of

operating systems has been reduced considerably. However,

it is important to use tneir efforts as paradigms and not as
absolutes for design.

Structured analysis offers several advantages and
similarities to early operating system design. It is based
on a top-down approach utilizing graphic tools to express

data flow and processes. This allows the complexity to be

addressed abstractly at the higher levels, Fach 1level s
then partitioned into more detail until the refinement
reaches a low enough level for easy understanding and
implementation.,

A high 1level language should be used to implement the
design such as PLM. This should ease implementation,
maintenance, debugging, and aid productivity.

Generally, the development should follow contemporary
software engineering techniques. Earlier operating system
designs can be used as paradigms. The entire design is an

iterative process and is not a single vast sweep of design

‘ effort,

IIl. Functional Reguirements

Introduction

This chapter will focus on the functional requirements
of the timesharing operating system under development.
Discussion will focus on current operating systems, such as
UNIX, and why they are attractive from a functional
viewpoint, However, the discussion will primarily be
concerned with the man-machine interfaces, human
engineering, and programming productivity. The discussion
revolves around "user-oriented system behavior"™ or “"user
quality", These terms involve system characteristics such
as ease of use, tolerance to user errors, minimum
astonishment behavior, and minimization of error
opportunities by the user. Fach of these is important to
the man-computer interface in a productive computer
environment. They refer to how a system should behave to
meet the user's needs and constraints. In German technical
literature, "benulzerfreundlichkert" is widely used and
literally translated as "user-friendliness™ (Ref. 10: 270).

This is not a subject that can be covered easily. It
is very important, yet little material is available that is
well known and recognized. This may be because there are so
many poor examples available and successful attempts are
publicized too little. Appendix B contains support material

for this chapter and further references for a more detailed

study. Studies are revealed which indicate important

o M Nl Bt A U - PR i HNBINIL iino g5 SR, R U BN e s s e T ey R, n — -

qualities for a particular class of users, as well as the

physical characteristics desirable for interactive systems

and appropriate dialogue styles. .

Backaround

Several requirements can be specified for an operating

'3 system to fit a general environment. This aproach, however,
can result in a vagque and incomplete picture of a specific
operating system, Different user requirements, machine
architectures, cost, applications, and software are among
the considerations affecting the design requirements of an

operating system. The design of an "optimal and perfect”

operating system is impractical because this presumes an

exact knowledge of user needs, preferences, and experience.

. e

However, several systems might be considered "standard"
because of their widespread use and popularity. Their

popularity is a result of their ablity to meet users' needs.

For example, CP/M is widely accepted as a single user
operating system for small computers. As a result, software

i packages specifically for CP/M have been successfully

marketed by several commercial vendors, This insures that
l ‘
| each user of a minicomputer system has a "standard" to

depend on with many software packages available (Ref, 61:

ix).

UNIX, the operating system discussed in Chapter One, is

quickly becoming a standard because of its versatility, ;
adaptability to other bhardware, and ease of use, ILike CP/M, H

; it also has hundreds of applications packages (Ref, 43).]
. 23 ﬁ

- i ettt e =N ; : ——w___m-J

Though CP/M and UNIX may be considered standards, they
were developed for specific purposes. CP/M was developed
specifically for use with the 8080 microprocessor in
conjunction with the new floppy disk drives and 16K of main
memory (Ref. 26: 222), UNIX initially was designed on a
PDP-7 and was specifically meant for programming research.

The fact that they bhave become industry standards 1is a

compliment to their deéign. They did not set out to be

standards but became popular by meeting needs of wusers and
filling a gap between the user and an often hostile
computing environment. UNIX has become so popular that
"UNIX-like” systems for specific hardware configurations are
being introduced rapidly, i.e. UniFLEX for the Motorola
68000 (Ref. 3: 7), Zeus for the Zilog 278000 (Ref. 58
:120), Cromix for the Cromemco minicomputers (Ref. 3: 7),
OMNIX for the Z80 (Ref., 3: 7), IDRIS (Ref. 40: 125) and
LSX (Ref . 30: 2087) for the LSI-11. Two other
transportable systems, Xenix (Ref. 14: 248) and Coherent
(Ref, 3: 8) are intended to work on 16-bit microprocessors.

TENEX, developed in the early 1970's by BBN (Bolt
Beranek and Newman, Inc.), was one of the first operating
systems to incorporate "good human engineering" as a major
design goal (Ref. 2: 136). An executive command language
interpreter provided direct access to a large variety of
commonly used system functions, and control and access to
other subsystems and user programs. Command language forms

were meant to be extremely versatile, adapting to the skill

1

aid,

S I

E e MO
— et Y

A L

i R S SIS i, 5 35 5o OIS WS E 7 1501 Sl 3N

i

and experience of the programmer, This creates a very
productive environment for the programmer. The TENEX
command lanquage interpreter, FXEC, was designed with two
primary requirements - ease of use and ease of learning.
Thus, novices to experts can easily work with TENEX because
of its versatile command language,

Another influential system, CTSS (Compatible
Time-Sharing System), came into use at MIT in 1963. An
interesting point about CTSS is that it influenced
user/machine interface so radically that it was studied for
the development of TENEX (Ref. 2: 136) and MULTICS
(Multiplexed Information and Computing System) which was a
cooperative effort between MIT, Bell Telephone Laboratories
and General Electric (Ref. 38), Fven the Popular UNIX
system 1is considered a modern implementation of CTSS (Ref.
43: 1948).

Thus, a good case can be made for human engineering or
"user friendliness" as an objective when developing the
requirements of an operating system. Not only does it
increase popularity of the system, but it also increases

software productivity.

YUser Friendliness"

The huge success of UNIX is largely attributable to its
ease of use and user interface with the machine, As its
inventor puts it, "Throughout, simplicity has been

substituted for efficiency” (Ref. 54 1932). This idea

seems to be a general trend in operating systems. In the

25

T e A TR ¥ A T 10 T AR B e I Ot i 13

T o T A A 141 o W .- VY Y TR TP oS PSR i, o P e =

T

R i)
R TV

40 i tma Gt ol 1 2

Ty T
_ | . . o
CO APV NPT S o

b g

A

past, efficiency has been squeezed out of the processor and
memory, but often at the expense of the programmer’s use of
the machine. The Editor-in-Chief of a popular computer
publication expressed the feeling of many software
designers, "I'd buy an operating system any day that takes a
long time to run a given program, but which makes me moure
productive by communicating with me in useful ways...the
cost of a lire of code is becoming astronomical" (Ref,. 35:
€).

Up until the last few years, more opinion then
knowledge has existed about what wuser-quality is in
interactive systems. A widely accepted definition cannot be
found. User-quality may be defined as a set of system
properties which are relevent to man-computer interaction
from the user point of view according to their sensory,
cognitive and affective structures (Ref. 10: 270).

The user is typically unconcerned with the technical
details of how services are programmed or produced, except
perhaps when they fail to meet user requirements. Users are
interested in the 1level of service delivered at the
terminal, not the internal operation of delivery. However,
knowledge of what constitutes good service presumes an
understanding of user needs. The question is, what does the
user need?

Users perceive the quality of interactive computer
systems from different viewpoints. User-quality depends on

the needs, preferences, problems and past experience of

. . . . o - -
e SRR AN - W~ IRty s | TR P IO i < R YRR NI MOS0 V> o 2SS BN e SO il -t I R R T I R s oot S e Tl SV St iadd
—— .

AT e,

users and can vary widely. It follows then that there can

be no single measure of system quality. Therefore, "the"

T

user~oriented system does not exist. For a group of users

Rl b 5 Lo

or for one user some system properties will be selected over
others and some system charactéristics will be judged
undesirable by other users (see Apendex B).

When developing an interactive system, a frequent
question involves the éllocation of tasks to the computer

and man. Usually, the question is resolved by allowing the

computer to perform anything it can do better than the user.
Assuming the current level of computer intelligence, this is
a reasonable approach (Ref, 46: 852). But, the future may
see computers performing the human role and taking over real
life information processing tasks. What tasks are left for
the human if the computer is allocated these tasks? It may
be that the computer assumes all routine duties and humans
are free for other more creative endeavors.

For many jobs, however, the computer may not be able to

accurately simulate the human processor. The user will

retain these tasks and the man-machine interface will always
remain, If the total man-computer performance is to be
maintained, the role filled by the user must be coherent
with the computer. In future designs of man-computer

interfaces, a strong attempt should be made to assume the

user has a meaningful role and a friendly environment,

T ——

| 27

Conmand. [.anguage

The user accers to a computer system and its various
facilities isg, in almost all cases, via a system command
lanquage. FProbably no other feature is mnore important in
deciding the individuol's effectiveness in using the system
than this aspect (Ref. 34: 512).

The command language structure may be thought of as a
generalized finite state automaton where each state
transition is associated with a condition and a response
(Pef. 6: 362). The automaton can be represented by a state
transition graph. For the environment to be controllable,
the user must be capable of freely moving around in the
graph. The user must be able to select a command and abort
it when required., However, when an abort is selected, care
should be taken when deciding to what state contrecl should
return. It is important that the user feel in control of
the system and have adequate knowledge of the system to make
control possible, As a minimum, it should be known where
the user is, where the user has been, and where the user can
go (Ref. 11: 344).

Contemporary computer scientists agree that computer
systems should be more natural to use. The problem is, what
is meant by "natural”? Fitter (Ref. 11) arques that while
some users prefer computers to use plain English dialogue,
it would be more desirable to issue instructions in computer
lanqguage to humans. The point is, plain English is full of

ambiguity and is unfit when precision is required. For the

T

L T e a2 a el i s

. bty " NG, s o et 8

— N\

HUMAN

<—— IMPLICIT

COMMAND RESPONSE

COMMAND
LANGUAGE) =s=—— EXPLICIT

COMPUTER | —«—— FIXED

Fiqure 4. Command L.anguage Interface

purpose of man-computer communication, a natural language is
one that makes explicit, as indicated in fiqure 2, the
knowledge and processes for which the human and computer
share a commmon understanding (Ref. 11: 340).

It becomes the responsibility of the systems designer
to provide a language structure which will make apparent to
the user the procedures on which it is based and will not
lead him to expect unrealistic powers of inference from the
computer. It is required from the beginning to recognize
the fact that a good command language will require complex
programming. A reluctance to accept the overhead involved
is one of the main factors contributing to the lack of good
command languages available today (Ref. 25: 316).

Arguments

A command language must allow unambiquous specification

29

P R R L

of

what the user wishes accomplished. The information or

arguments to be acted upon and the action to be performed

must be specified. These can be specified by a number of

methods (Ref, 56: 359), Arguments may be given explicitly,

default values, implied by context, or abbreviated in an

agreed form,

An argument specifies various options or alternatives

for realizing the particular command. If a user does not 1

specify certain arguments, the command 1language may

For example:

automatically assign default values.

SAVE FILEl DISK PROTBCTED
(COMMAND) (ARGUMENTS),

specifies that FILEl will be SAVEAQd. DISK will be the

storage device and it is to be PROTECTED from other users,

The default values may have been to store the file on tape

and leave the file unprotected.

One alternative is to prompt the user with regard to

time

missing arqguments. However, the selection may become

consuming and complicated depending on the command and types

of arguments involved. An attractive alternative is to

assign default values automatically to missing arguments,

This is one of the more powerful existing computer system

concepts for achieving a user—-oriented environment. i

Fssentially, the use of defaults constitutes an agreement

between user and the computer as to what a normal working

value is for each default. Problems may still arise if the !

default values are unknown to the user or if the values are

not easily changed. One solution may be for the computer

30

systerm to cptionally displey defavlt velues.

There are generally two nethods for arquments to be
formatted vith commands, Positional format requires
information to be in a fixed or absolute position within the
string of arguments. Feywvord formet allows arguments to be
given as @& string permutation of special words indicating
the argument type as well as its value. The positional
format imposes the additional burden on the user of
remembering positions. The keyword format is more
user-oriented and studies show the positional format
produces greater error rates (Ref. 34: 513),.

Prompts

As mentioned earlier prompts may be used to cue the
user when arqguments are deleted from commands. In
situations where it is undesirable to assign default valvues,
the user should be prompted with some brief characters to
indicate what is expected next and perhaps displaying the
alternatives available for specifying or selecting the
required information, Prompts may also be useful to act as
cues in complex command chains to avoid confusion and
prevent the chain of commands from becoming a maze. Above
all, prompts should serve as a positive reinforcement that
the computer is responding as required or expected - the
equivalent of a human nod.

Some users consider it desirable to be able to select

more or less terse prompts, More experienced users should

be able to turn the prompts off if desired. However,

. pritiibs - bRl Ay S g BRTT NI M VAR v oA SANNTE i 7 3+ 30 30 s 21 . - . e e g AT A e, il 4 i

beginners have indicated that prompts are useful and usually
desire prompts to be an obvious English mnemonic (Ref. 56:
363) .

On Line DPocumentation

An interactive system should have the capability of
providing help to a user when needed. Granted, on-line
documentation is no substitute for written system
documentation, but the middle of an interactive session is
no place to study system manuals. Occasions may arise
during on-line sessions when it is questionable what the
system wants or what options are available.

A "help" facility can add flexibility to the system by
allowing the novice or casual user the confidence and same
capability as the more experienced user, A simple reply,
such as a "?", to the computer should provide sufficient
information for the user to continue the computing session.
However, verbose messages should be avoided if possible.

One method of on-line documentation is to provide the
usér with a hierarchical «classification tree which |is
traversed by selection of key words from menus. This is not
an unreasonable approach and it may save the interactive
user from digging in hard-copy manuals but at the same time,
it can be time-consuming and digging in hard-copy may be the
better alternative until the user is more experienced on the
system,

Erroyr Messpges

The text of error messages is important and should be

o} i P 21T

e e

FO R R P T - R

as specific an rossible to the probler, However, lengthly
or verbose mesrages are best avoided for the experienced
user wlko has made a simple error, Tt is a good policy to
have a facility to supress long errcor mescages if desired.
A mair theme throughout the command language facilities is
to adjust the flow of interaction to the ability of the

user,

Recovery

Recovery is the reinstatement of some past state of the

. AR A o PPy e e et = T

computer system, usually after an error or system
f} malfunction. There is 1little 1literature on the specfic E
procedures to take when recovery is necessary, but Miller
| (Ref. 34) presents four types of recovery situations with
respect to the interactive user:

(1) user correction of data input

(2) user deletion of issued commands
- (3) abort or abnormal exit from a program

(4) system crash

With respect to (1), most systems allow local editing

or correction before transmission to the computer. This

presents little or no problem.

In situation (2), a more complex procedure is involved

depending on the command that has been issued. For example, (
if the wrong file has been inadvertently deleted the system f
may provide back-up copies of deleted files and recovery is
achieved by the user requesting his back-up copy. o
Obviously, not all issued commands can be recovered with no

loss. Nevertheless, the novice who is afraid of issuing

;! 33

oo T L NI AN G5, A5 I Ak gy e, O ok WS b AN o age

commands may find this beneficial. It helps ease the stress
of issuing commands if it is known some may be withdrawn,

ji ITn situvations (1) and (2) it is important to point out
that it was up to the user to detect errors and initiate
recovery action., However, situations (3) and (4) originate
with the actions of the system. 7Tn both situations it is
:i desirable to inform users with regard to what happened, why
it happened, and how to recover,

Situation (3) typically occurs because the program

' ' controlling the user session has been asked to perform some
illegal procedure and no error routine is available to test :

or handle that particular circumstance. Usually the user is

given no more than a "job aborted" message. Preferably, the ﬁ
supervisory system will provide information on where the
error occurred, what rule was vioclated, and what can be done

to recover and continue processing,

There is usually little that can be done in situaticn
(4) . System crashes are abrupt, unscheduled terminations of
system operation. Tt would be desirable to shift full
responsibility for system crashes to the system itself by
providing a separately confiqured and powered processor and
media system. Following the recovery rrocedure, the system
could automatically recreate the earlier system state,

however, this could become quite extravagant.

Files System

Users ususally create a large number of text and

; program files, Operations on these files are numerous and

R hiedrio s Ao il S AT e IR

include merges, hard-copy outputs, editing, manipulations to
other peripheral devices, and execution, Simple, direct,
and consistent means should be provided for accomplishing
all of these operations independent of the nature of the
file, its structure or size. Also, the methods should be
consistent throughout the system,

The file system is very visible to the wuser and its
effectiveness contributes a great deal to the friendliness

of the operating system, As a minimum the file system may:

Allow creation and deleticn of files.

Perform automatic management of secondary memory

space. The user should not have to be concerned

with location of his file in secondary memory.

(3) Protect user files against system failures.
Unless convinced of system reliability, user
will be hesitant to use the file system,

(4) BAllow reading and writing to files.

(5) Use symbolic names to reference files. Users
should not be required to keep track of physical
locations of files,

(6) Users should be able to share files among

cooperating users and protect files as desired.

-~
N =
—

As an example of what has made UNIX so popular,
consider the file system used by UNIX. Jt is a tree
structure originating from a root directory, thus, a
recursive structure (PRef. J4: 256). Names of files and
subdirectories are contained in the root. Subdirectories
contain names of other files and additional subdirectories,
etc. A user is assigned a unique subdirectory when 1logging
on as the current working directory. Full path names for
files consist of a possibly null sequence of subdirectories
separated by a slash beginning with either the root or a

current working directory, and followed by the file name as

35

- R s e T

T N TW W OR PR PO -

At

e © v s e

ROOT

-

E DIR3 G

) (@)
FILE:<:::) DIRECTORY:

File

UNIX
PTR
C

E

K

Figure 5., UNIX File System Implementation

Table 1. UNIX File Access Convention

| From user start point * (DIR2):

can be accessed by: alternative:
oo/« /JUNIX /UNIX
«e/++/DEV/PTR /DEV/PTR
../C /DIR1/C
E /DIR1/DIR2/E
DIR3/K /DIR1/DIR2/DIR3/K

36

orelie, A A S - " ALY 5 . SN S Ryt e T e i R Y, AR L . i

indicated in ficure 3. (Ref. 4). Table 1 contains commands

for files and directcries in the file system, Fy i
3 §
2 conventiecn, the file in each subdirectory called ".." refers }
4 to the parert directory. Therefore, the user has a concept ‘

of local and glohal files neatly organized into directory

groupings.

Applications Packages

Applications packages and utilities are normally not
part of the operating system and it is not intended to make
them part of this design effort. However, an operating
system, besides perferming services for tasks as they
execute, should provide the facilities to assist system
users in the design and testing of new software,
Applications packages can make a significant impact on user
productivity. Operating systems are cften characterized by
| the applications programs they provide. These facilities
may include editors, debuggers, performance measurement,
diagnostics, language translators, program loading,
libraries, and input/output facilities (Ref. 62: 38).

If frequency of usage is intended to measure the

importance of facilities, editing appears to be the most

important facility provided by the computer system. An
analysis was done on the interactive commands issued to a
IBM TSS/360 which found that 75% of the commands were for

editing. Programmers issued approximately 50% editing i

commands and users involved in text documents issued 80%

editing commands (Ref. 34: 514).

3 37

Editors should have the ability to change, insert, and

delete character strings. However, a well-designed editor

should also be able to establish fields and move from field
to field (perhaps via tab controls), have special commands
for moving groups of 1lines from one position to another,
provide a scheme for numbering lines, and string search
facilities, One approach to editing, which 1is very
user-oriented is the screen oriented editor which uses
function keys to manipulate the input text or program.
This is usually reserved for text editors only but program
editors could also benefit from the screen oriented

approach,

Response_or_Feedback

The computer should respond quickly or if that is not
possible, the user should be provided with some feedback
that the program or activity is operating. Tf the user's
input causes a move through different states in the machine,
the user should be informed immediately of the new state
entered, Systems which allow the user to think one activity
is being performed when the system is actually doing
something else are extremely frustrating (Ref. 11: 345),

Although an immediate response is obviously desirable,
there can be technical difficulties in producing one. In a
multi-user system the problem is dependent on many factors,
Overloading is a function of the user population and can be
controlled more easily as the users become homogeneous and

well defined. Complex scheduling algorithms may be required

38

A G OB M 27 i DA G eI - WAL T L g3 APV, b 6

to quaranter response times emang fluctuating vser
characterinticsn.

Gaines and Faccy (Pef. 13: £95) found that even under
ideal circumctanrces, it is difficult to estimate response
times even for the zero-computation interactive user. Also,
varying response times without apparent cause were
frustrating to the user. However, it is also pointed out
that the response the user expects is related to the task
requested. The interactive user may expect an immediate
response or feedback after a simple command but the user is
also willing to accept a longer wait period if a complex

computation from the system was requested (Ref. 33).

Storage Size

Storage requirements are dependent on a number of
factors, The number of users, size of user programs,
application packages, and efficient memory management will
all have a bearing on the storage needed.

Generally, the operating system should be required to
manage a hierarchy of memory. Slower memory devices such as
disks can be treated as input/output devices with sufficient
storage capacity for each user. Faster direct access memory
is more 1limited and more strictly managed by the operating
system. A balance should be achieved between user needs,
the number of users and what is available.

The operating system itself can be expected to utilize
a significant portion of memory. For example, the UNIX

system Kkernel occupies about 20K (Ref. 42: 1907) and

39

|

A R A

XENIX-8086 memory needs are about 82K (FRef, 27: 51).

Media Requirements

To facilitate flexibility and speed for retrieval and
storage, media devices are required which allow rapid access
to information, Space should be available in reasonable
quantity and at a reasonable cost so the user does not feel
restricted in what or how information is stored. This may
vltimatly require a hierarchy of media, including removable
media such as floppy disks. TJTrregardless of the type of
media, the system should support variable types and numbers
of devices without effecting system performance drastically.
The operating system should create the abstraction of a
virtual device. Given the proper device handlers to
interface with the operating system, a variety of media is
possible,

Security and privacy capabilities of media is also
important. Media should be sharable when necessary. Yet,
provisions should exist to allow access only to the author

when desired.

Ease of Implementation

Implementation was briefly discussed in Chapter Two.
To be implemented a system must be easily understood and
well-designed, Fase of implementation is required if a
system is ever to be realized. Otherwise, the most
innovative ideas and proficient design is of little value,

Weinburg supports a top-down implementation (Ref. 57:

iaan s s~ S SN s S AN« VO 118 N SN IS 3 i 4530 WSO Rl 305 '

216) as de Vourcon and Constantire (Fef. 59) . Their

approach ecnceovrages the use of graphic methods, i.e., data
flow diagrarsz and structure charte as development and design
tools, Such graphicfmethods provide a modular picture of
the entire svstem. The apportionment of the system can be
visualized and implementation phases are more easily
identified,

Usually, systems eésily implemented using the above
approach are also easily modified. A well designed system
will need few modifications. However, as needs and users
change, modifications may be desirable,

The language aspects of implementation were discussed
in Chapter Two. An appropriate high order language can ease

implementation considerably.

Ease of lLearping

Throughout this chapter, user oriented topics such as
command language, files management, system response, and
system "friendliness" have been stressed. Hopefully, the
end result is a system that is easy for the user to
communicate and work with. The prime funtional requirement,
ease of use, is a must for a high degree of productivity in
an interactive system, For the novice, ease of learning |is
equally important and should remain a dominant theme

throughout the design.,

Conclusions

Much of the above discussion may present itself as

s

25 AT it X ARV i i aitishon Nl e g

obviohs requirements. Fven though this may be the case, it
remains a fact that few interactive computing systems score
high when measured against some of these requirements, It
has been suggested that this is because human factors such
as "user-friendliness" are considered too late in the design
process and are only considered an embellishment to the

system (Ref. 11: 346).

42

B o

o

RS g D 7 P St e = i

Intreduetion
This chaptelr acddresses the system requirements

necessary for the cperating syster under development., The

functional requirements of Chapter Three will be translated
into more specific system specifications. The first area
will address the hardware requirements for a timesharing
operating system. The software requirements are approached
using methods discussed in Chapter Two, primarily structured
analysis techniques as given by Weinberg (Ref. 57). The
application of structured analysis is briefly discussed and
its use 1is justified, The software requirements are
developed from the user level, to the file management level,
to the input/output manager, to the process scheduler, to

the memory manager level, and finally to the nucleus.

Hardware Requirements
The following hardware requiremnents are based on
several factors, First, any multiprogramming system which

provides timesharing requires a specific type of hardware

environment to operate in. Second, the functional

requirements of Chapter Three imply certain hardware
facilities to function as intended. Those same requirements
may introduce constraints on the hardware. Further
constraints are possibly imposed by the existing hardware or

eliminated by state-of-the-art techniques,

43

ey R 50 ATt 525 a1+t oo G 030~ s WA IO O T AR AMEHIN U I s s 1 P

|
|
k' While the bhardware requirements reflect the desired |
f’ hardware configuration, any shortcomings in the actual
y

hardware must be addressed in software. 1In other words, if

- the hardware capability does not exist on the implementation

4 computer, the requirement must be met with software.

Interrupt Hardware

i Interrupts generally arrive at unpredictable rates and
J times with several interrupt events occurring
simultaneously. Process switching, input/output devices,
4 timers, and errors all create interrupts within the system.
Roth hardware and software priorities on interrupts are
X required@ because of the importance to the operating systen i
of processes waiting for interrupt signals for awakening and |
because of the existence of timing constraints between an
interrupt causing event and its processing. Preferably, a
set of hardware priorities for a broad class of interrupts
plus the ability to enable and disable interrupts permits
the system to dynamically establish precedence relationships
among interrupt causing events. Upon an interrupt
1 occurance, the hardware should save the state cf the CPU,
] determine the interrupt source, and initiate the appropriate
routine to handle the interrupt.
:1 Timer_ Mechanism
A timer must be available that is programmable and can

produce interrupts at regular intervals to control

timesharing, The timer is particularly impor tant to

e rmar.ra

multiprogramming and preemptive scheduling techniques.

44

Y . i P . et o e - Lo e e Lo Sk e VY W

Storage. Trotection Capability

It i important to bave hardware facilities for
protecticn of m2in merory. Protection should be sufficient
to protect processes from malicious or erratic invasion of
other processes. This is applicable to both system and user
processes,

Direct MAccess Secopdary Storage

System flexibility is increased by providing fast
storage for library routines and system programs.
Peripheral devices are kept busy by providing auxilary
storage of input/output. User files must be stored in an

orderly fashion on readily available media.

Structured Specification of Software Requirements

Structured Analysis is a top down, philosophical
approach to each phase of the systems development life
cycle, utilizing graphic tools and a structured methodology
(Ref, 57: 320). Several techniques are available to
engineer the software structure of operating systems (Ref.
5). Structured: analysis was chosen because of its
advantagés over other methods and‘ similarities with the
methods used on successful operating systems as discussed in
Chapter Two.

In structured analysis, the top level of the system,
closest to the user, is addressed first in an abstract
manner. Fach succeeding lower level is addressed to refine
the higher levels by partitioning the processes and data

flows. This concept of partitioning allows a complex system

45

Sk o

Cea M s

il - Shar i o Y AN, S, B o m 2 s - = . .
e Ao b Bl P n S g R T R T I T

DATA

DATA
DESTINATION

SQURCE

DATA BASE

Figure 6. Data Flow Diagram Symbols

to be addressed one level at a time without confusing the
operation with burdensome details,

The graphic tools used to represent the processes and
data flows are indicated in figure 6. Rectangles represent
the source and destination of data for a particular 1level.
Circles represent the process involved and an arrow is an
indication of data flow to and from the processes. Data
bases are shown by straight lines. A data element is a data
flow which cannot bLe partitioned further. Fach data flow
and process is partitioned from the user level to a low
level representing data elements and low level processes.
At this point the data flows, data bases and processes are
defined and recorded in a dictionary.

The approach to structuring a hierarchical system will
create layers which provide a set of functions dependent
only on the layers within, Fach layer can be regarded as

implementing a virtual machine to the layers above. The

final layer represents the virtual machine the user sees.

2 =t St At

Table ?

Cperating System Shell
File Management
Ingput/Output Management
Scheduling Management
lienory !anagement
System Nucleus

As indicated by fiqure 7, the operating system must

user

provide all interaction between the user input and the

output,. The interaction will include action by the other

layers in the operating system invisible to the user, The

operating system includes all layers as well as the hardware

interfaces required to implement the functional requirements

of the system. A "boot" process is necessary to initiate

the system confiquration.

USER SYSTEM
USER EXECUTE RESPONSE | USER
INPUT OPERATING OUTPUT
DEVICE SYSTEM DEVICE
CONFIGURATION DATA
SYSTEM ///(
SUPERVISOR

Figure

7.

Operating System Context Diagram

e A, e A A A Mo A NGRS OB S i W AR N GMRRA L -

- - "
|
Table 3
Operating_System Shell)
, (Figure 8) 1
g
- 1. Determine Command Type
2. Execute System Command (Figure 9)
2.1 Verify Authorization
2.2 Provide System Menu
2.3 Confiqure System
'1 3. Determine Command
R 4, Execute Control Command (Figure 10)
- 4,1 Determine Control Command
E 4.2 Log-In User
A 4,3 Log-Out User
Li 4.4 Execute Inquiry Command
9 5. Execute Help Command (Figure 11) }
' 5.1 Determine Help Required i
} 5.2 Provide Command Information
B 5.3 Provide System Information
1 6. Execute User Command (Figure 12)
j 6.1 Determine Command Conditions
. 6.2 Prompt User
. 6.3 Execute Command File g
7. Respond to User
it
'. Operating System Diagram
’ The data flow diagram in Figqure @ indicates the
software requirements for the operating system, Input ?

commands must be tested (1) to determine the type,
| supervisor or user, Supervisor commands are reserved for
the operating system supervisor and execute (2) processes k
which alter the configuration of the system, peripheral

device parameter, or users eligible to use the system, If

the command is determined to be a user command, three

further possiblities cause another determination to be made

(3). The user command may be a control command (4) which

48

i A i AR SR AL . RIS € MDY Ll i SRS i, AR 25T - o e - e . . - e -
——

2
EXECUTE

SYSTEM PARAMETERS

SYSTEM

COMMAND SYSTEM
COMMAND COMMAND
1
DETERMINE
COMMAND
TYPE

4
EXECUTE
CONTROL
COMMAND

3
DETERMINE
COMMAND

CONTROL
COMMAND

USER
COMMAND

HELP
SESSION COMMAND

COMMAND

6 5

EXECUTE EXECUTE
USER HELP
COMMAND COMMAND

COMNTROL
MESSAGE

SYSTEM
RESPONSE

5
RESPOND
TO USER

USER
RESPONSE

Figure 8. Operating System Shell Diagram

requires special attention by the system, Fxamples of
control commands are 1log-in, 1log-out, or special system
inquiry commands. A help command (5) will provide the user

with assistance in determining the next possible action or

49

-t S Sl IR, 3 AT NN APt B A - ¥ xS W e e - R i *-

———c

Ty R

Dl e e

r—— et > At e oo e+ At e ettt e~ - 2

SYSTEM COMMAND ILLEGAL COMMAND

VERIFY
AUTHORIT
2,1

AUTHORIZED COMMAND

AUTHORIZATION
MESSAGE

2.2
PROVIDE

MENU

COMFIGURATION DATA

MENU FILE

Figure 9. Execute System Command

command., Help prcvided will depend on the users state in
the system, Commands to the operating system (6) are
executed in a manner characteristic of each command. Since
commands may require different parameters and arguments,
each command is dependent on special circumstances and is
treated as a general case here. Finally, each request by
the user requires a response by the system (7). The system
must keep the user informed of the user status as often as

necessary.

System commands are commands reserved for the system

50

|

D AR, e uaniartt AN T 5 WA 8. B0, o1 e ek e A T LMo A Al - e

USER LIST

g CONTRCL LOGIN PROMPT
COHHAND L.OG-1IN

COMMAND

: 4,1 USER DESCRIPTORS

: DETERMINF '

4 CONTFCL :

j COMMAND 4.3 ;

: o LOG-0UT E
LOG-CUT USER LOG-OUT MESSAGE !

COMMAND

INQUIRY INQUIRY RESPONSE

COMMAND

SYSTEM DATA 1

Figure 10. Execute Control Command

W S

supervisor. In order to use a system command, the user's
authority must be established by the system (2.1) . Once
authorization is given, the system provides a menu (2.2) of

characteristics which may be altered to suit user needs.

Commands are selected from the menu, issued to the system,
and written out (2.3) to the data base used to configure the
system.

Control commands are uvsed to request special
information from the system, enter or exit the system. A
determination (4.1) must be made which of these commands is

being requested. A log-in command (4.2) will cause a check

51

A Rt LIRS ST S . Bl VMO - IO b LA D L1 SNSRI SN 1500 5 7,50 3 et rin 1 et N ke . R - - - i - .

of the configuration data, more specifically, the user list,
If the log-in attempt is legitimate, 2 user descriptor will :
be established. A log-out command will delete the user
descriptor (4.3) and a 1log-out message is passed to the
user. BAn inquiry command is similar to a help command with
the exception that the user need not be logged-on the system
to successfully execute it, Inquiries are executed (4.4) by
accessing a system file ¢ontaining general information such
as vho is authorized use, the name of the system manager,
and system capabilities.

A help command is classified as a system information

request or a command information request (5.1). A system

——n

prone

information request will access a data base containing
information on the general capabilities, characteristics,

and configuration of the operating system (5.2). A command

T ¢ s
— %o —

SYSTEM INFORMATION

5.2
PROVIDE
SYSTEM

' SYSTEM
INFO REQUEST

SYSTEM INFO

HELP COMMAND

REQUIRED

COMMAND DOCUMENTATION

COMMAND

INFO REQUEST 5.3
PROVIDE COMMAND INFO ,
COMMAND |

INFO

Figure 11. FExecute Help Command |

52

el

Sl S ot R IO gl ST, IRy bl 1t asin g e e e

informatien recuect (5.3) will provide information on
available commande and their usage,

There are generally two schools of thought on the issue
on command Janguages in operating systems (Fef, 29: 51).
The first ic that a command langquage is not part of an
operating systen but should be a separate applications
prograr which runs on the system. The second philosophy is
that the command langquage is the final interface between the
user and the machine, and is an additional built-in layer of
the operating system. The approach here falls somewvhere
between the two arguments. The requirements as given
provide an environment for a flexibile command language but
do not specify commands, arguments, or execution. Thus,
environment is part of the operating system and the command
language is a separate package,

A session command will execute a command to the
operating system. First, the command string is interpreted
(6.1). Special conditions involving the command execution
are examined (€.2). This information 1is contained in a
command table and includes arguments or special
characteristics peculiar to that command. Special
conditions may include such capabilities as looping a
command several times with different arguments, Any
necessary information not provided by the user must be
requested (6.3) to accomplish the command. Finally, the
command is executed given the conditions and arguments

(6.4).

i A Aot e Al A pengronins il NS b U vt e <" S AR a2 et

6.1
INTERPRE
COMMAND
STRING

SESSION
COMMAND

INTERPRETED
COMMAND

6 L] 4
EXECUTE
COMMAND

SYSTEM
RESPONSE X

COMMANMND
ARGUMENTS

COMMAND TABLE

COMMAND
CONDITIONS

6.2 PROMPT |4
DETERMINE
COMMAND

CONDITION

6.3
PROMPT
USER

COMMAND
REQUIREMENTS

Figure 12, Execute User Command

\

\
Files Mapagement

Files management is concerned with the storage and

JE s Y

retrieval of information by the system in an efficient and
well organized manner., This involves four system
responsibilities (Ref. 28: 337). A record must be |
maintained on all information available in the file system.
This will include the name, location, and access rights to
all files. A determination must be made of how information
is stored and who has the right to read, write and access
the files in storage. Some files may be shared and others
must be protected. File space must be allocated to the

users and initial access rights and characteristics.

54

FILE
FILE REQUREET FILF DAT2
REQUEST |~ — T T MANAGE FILE
FILF DEVICE

SCUPRCE

SYSTEM

FILE CATALOG

Figure 13, File Management Context Diagram

established. Also, deallocation must be accomplished when
the user no longer needs the information.

This process is conceptually simple, yet is very
important with regard to the user-machine interface. It is
also the largest part of many operating systems and requires
the most design and coding effort (Ref., 43: 244).

There are two benefits that motivate file storage., Tt
is a great convenience to the user to be able to store
information on-line, In a multi-user system it is
impractical to expect the user to operate without on-line
storage when the only input device available is a video
terminal. Second, the sharing of information is desirable
among users. Applications packages can be used by several
programmers and data may be shared between several users,
Storage is in the form of a logical unit, a "file", of
arbitrary size. The file is separated into blocks of fixed

length on the media. The requirement is to map a symbolic

55

Table 4

File Management
(Fiqgure 14)

1. Determine Master Directory
2. Locate User File Directory

3. Execute Open File (Figure 15)
3.1 Determine Mude
3.2 Locate Directory Entry
3.3 R2Allocate File Space (Figure 16)
3.3.1 Determine Number of Blocks
3.3.2 Identifiy Free Blocks
3.3.3 Connect File Blocks
3.3.4 Establish Access Rights
Extract Directory Data
Check Access Rights
Execute Link File Routine (Figure 17)
3.6.1 Determine User Directory
3.6.2 Link Owner to User File
3.6.3 Link User to Qwner File

WwWw
L 2 L[] .
N

3.7 Determine Physical File Location
3.8 Create File Descriptor (Figure 18)
3.8.1 Create Local File Block
3.8.2 Test Central File Block
3.8.3 Create Central File Block
4, Execute Close File (Fiqure 19)

4,1 Delete Local File Descriptor

4,2 Update Central File Block Status

4,3 Delete Central File Block
name to a physical location in secondary storage. A file
catalogue is needed to hold information on the names and
associated 1locations of files. A master file catalogue
holds the location for each user's files directcry.

The master directory must be determined for the user
making the request (1). Since a user may specify another
directory as the master directory, and each of the files can
be directories, this check must be made each time a user
makes a file request. The master directory is fixed for

system file requests. Once the master is determined, the

56

A M i 0o .l R . AT el i oL LS AN il e

locaticn of the user file must be determined (2). The user

file directory contains all the information about a file

g that is necessary to (fill the file request, The file is

opered (2) bv creating a file descriptor for input/output

Mfter the file acticn is completed, the file is

processing.

closed and must be re-opened before it can be read or

written to again.

Opening the file consists primarily of looking up where

the file is stored, on what device, and gathering the

required informatien for the requested action, The first

CURRENT MASTER DIRECTORY

FILE
DESCRIPTOR

FILF COMMAND

LOCATE
USER FILE
DIRECTORY
2

FILE
REQUEST

CLOSE REQUEST

DIRECTORY
LOCATION

1

DETERMINE
MASTER

DIRECTORY

FILFE DESCRIPTORS

USER DECRIPTORS

Figure 14, File Management Overview

3.7
DETERMINE

' FILFE

LOCATION

FILE COMMAND

LOGICAL
DEVICE

DIRECTORY
ERROR

OPEN FILE
REQUEST

LOCATE
DIRECTOR
ENTRY

3.2

COMMAND

NEW FILE

FILE 3.3
LOCATION ALLOCATE
FILE
SPACE

3.4
EXTRACT
DIRECTORY
DATA

USER FILE DIRECTORY

DIRECTORY
LINKS

ACCESS
RIGHTS

FILE
PARAMETERS

PHYSICAL CREATE LINK
LOCATION FILE APPROVAL
DESCRIPTOR
3.8 -
CHECK
ACCESS ACCESS
RIGHTS ABORT

3.5

FILE
DESCRIPTOR

requirement

i.e.

write or read.

Execute Open File

Figure 15,

is to determine the mode of the operation (3.1)

Next, the filename is located in the

g
B T s o S e e N e i) P W il N p

directory (*.2) and the ocntry 1is inspected. If the
directory entry is being created, new file space is {
allocated 2.3) and the necessary directory information is I
updated before the file is opened., Required information is

read frem the directory (3.4) svch as location, access

rights, end other file parameters, The access privileges

ikl

are determined by comparing the requesting user's

credentials with the recorded access rights in the file k

directory (3.5). Cnly the owner of the file can change the

e e LD

access rights. If they do not match the mode requested, the

attempt to open the file will abort. If the request is to

B el N

NEW ACCESS RIGHTS

»
v

3.3.1
DETERMINE
NUMBER

OF BLOCKS

NEW
FILE NAME

3.3.4
ESTABLISH
ACCESS
RIGHTS

NEW FILE

NUMBER
OF BLOCKS

BLOCK ADDRESS

3.3.2
IDENTIFY
FREE
BLOCKS

3.3.3

T .
BLOCK ID [CONNECT

STORAGE ERRO

FILE STORAGE DIRECTORY

T Pt £ A T £ Y T W e RO g YR oo

Fiqure 16, Allocate File Storage

_~.., i, AN P EERANIN I i Gt 50 S Vo I M MVt b 250 s ¥ 2§ et

link one users file with another, (3.6) the 1links are

KR

created after access rights are established. The physical
location and device must be determined (3.7) to initiate
input/output. This information is passed to the procedure
which creates the file descriptor (3.8).

Allocating file space requires the correct number of

}4 file blocks to be connected and associated with a specific
‘d filename. The number of blocks must be determined (3.3.1)]
 } and identified (3.3.2) in the file storage directory. Once
3 identified as free, the blocks are connected (3.3.2) and]
associated with the specific file. If the file is new, the
F access rights must be established (3.3.4) by default or user
:
‘ USER DESCRIPTORS
‘; 3 .6 .1
X LINK APPROVAL DETERMINE
g USER REQUESTED
'U; DIRECTORY FILE NAME
2
S l 3 06 03
: LINK
{ USER TO
3 USER OWNMER

| DIRECTORY
‘ INFO

USER DIRECTORY

3.6.2
L.INK

OWNER TO
USER

OWNER LINK
\A

Figure 17. Execute Link Files

60

sl gl ~_ TR | A gt Vs - s v - R ¢ o

¢ o B AN W v ok 2

specification., The access rights are recorded in the user

file directory.

Shared files must appear in both the owner's directory
and the directory of the user sharing the file, Once access
privileges are verified, the directory of the requester is
determined (3.6.1) and a 1link is established (3.6.2). A
link is also established in the opposite direction (3.6.3)
for the owner to keep track of the users sharing the file,
If the owner changes access rights or the file is deleted,
the 1links must be destroyed. Only the owner can change the

access rights to a file.

The file descriptor must be created for all

3.8.1
CREATE

FILE PARAMETERS

LOCAL FILF BLOCK

DEVICE DESCRIPTOR
ADDRESS

EXISTING
BLOCK LOCATION

3.8.

TEST 3.8.
CENTRAL CREATE CENTRAL
FILE BLOC CENTRAL FILE BLOCK
FILE BLOCH

STATUS

STARTING
BLOCK

CENTRAL FILE BLOCK

Create File Descriptor

Figure 18.

T A Py

B T o s ae g e . . 1

) . input/output actions. The descriptor contains all the
ir information about the file necessary for data transfers.]
The descriptor must consist of two structures, The local
descriptor block is created (3.8.1) each time a process }

opens a file and all the 1local file descriptors for a

particular file must be connected to a central descriptor

which is associated with the appropriate device., A central i

file descriptor is created (3.8.3) for each file and is

tested (3.8.2) each time a local file descriptor is created

e L MES T ame

to determine if a file can be read or written to. If a

central file descriptor is not available, 2 new one is

jd]

e —— e e el . e

4,1
CLOSE FILFE DELETE

REQUEST

LOCAL FILE BLOCKS

LOCATION OF
CENTRAL FILE BLOCK

4.3
DELETE

4.2
UPDATE
STATUS

CURRENT STATUS

CENTRAL FILF BLOCKS

Figure 19. Close File

62

O T R R R R o oiaat

created, TIf one is available, its location is made known to

the new local file descriptor, Two file descriptors are
necessary to allow mutual exclusion to be applied to each
data structure separately rather than an entire 1list of
descriptors.

Closing a file 1is relatively simple. The local file
i - descriptor is deleted (4.1) and the central file descriptor
fv is notified (4.2). If no further processes require the

central file descriptor, then it too is deleted (4.3).

Input/Output Mapagement

The management of input/output devices is of ten
difficult because of the variety of devices that must be
handled. The characteristics and mode of operation of each
}ﬂ device can differ drastically. The data may be transferred
in different units such as blocks, records, bytes or words,
j{ The speed may also differ. A storage device may transfer a
million characters a second and a printer may run no faster

than 300 baud. The representation of data varies from one

INPUT /-—\ INPUT
OUTPUT I/0 REQUEST MANAGE I/0 DATA OUTPUT
SOURCE INPUT DEVICE
OUTPUT
DEVICE QUEUE
Figure 20. Input/Output Management Context Diagram ﬁ

63

media to another. The type of operations also vary, such as

outputing to a printer, inputing from a disk and rewinding a

tape.

Tdeally, the matter would be simplified considerably if

all devices could be handled uniformly. Many operating

systems achieve this by creating the abstraction of a

virtual device. UCSD Pascal refers to input/output devices

< as "volumes" (Ref. 34) and MULTICS uses "files" (Ref. 33).

The input/output manager must support device and code

independence for all devices. It should be unnecessary for

codes for the

a user to be required to know the character

devices he wants to use, Further, the system should be able |

to accomplish input/output with any device and achieve the

same result, It should not matter whether the output is

transferred to a printer or a disk. It is desirable that

input/output should be as device independent as possible.

Input/output devices often degrade performance by

creating a bottleneck in the system., Jt is desirable to {

perform input/output as efficiently as possible and keep

interrupt routines as short as possible,

The characteristics of each device should be associated

with the device 1itself, not with the operating system

input/output routines that manage them. The device routines

can thus be treated similarly by the system. Special

information needed for the operation of each device can be

obtained from device tables or descriptors and may contain

such information as the status of the device, translation

e e a a R M oINS, gimI [T P T WL gdaie N M, s s
14

1 Table 5
' Input/Output
(Figure 21)

) 1, Map Logical to Physical Device

2, Initiate Request (Figure 22)
2.1 BAssemble Request Block
2.2 Notify Device Handler
2.3 Add to Device Queue

evice Handler (Figure 23)

v
.1 Remove Request
.2 Delete from Queue
.3 Initiate Input/Output
.4 Notify Process

D
3
3
3
3
tables for the device, the current process using the device,
or instructions to operate the device.

The input/output manager must map the device identifier

to the physical device, check the validity of the parameters

supplied to the device, and initiate the request for

service. This must be a reentrant section to allow several
! processes to use it concurrently.
Mapping the device identifier to the physical device is

accomplished by comparing the device parameter with a table

of device descriptors kl). When the device has been
identified, the parameters can be checked for consistency
(4) with the information available in the device descriptor.
The type of operation, rate of transfer, destination or
origin must be checked. JTnitiating the request (2) requires
assembling the parameters of the request into a data
structure for the specific device., When the device handler
(3) is notified of a pending request, it will check the)

service file.

65

DEVICE DESCRIPTOR TABLE

I/0 REQUEST

DEVICE REQUEST
MAP PARAMETER NOTICE EXECUTE
LOGICAL INITIATE DEVICE
TO PHYSICAL REQUEST HANDLER
DEVICE 2 3
1

DEVICE SERVICE LIST
PHYSICAL REQUEST

DEVICE SERVICED
MESSAGE

CHECK 1/0
PARAMETERS ERROR MESSAGE
4

Figure 2° Input/Output Management Overview

Initiating the request consists of three processes.
The request parameters must be formed into a block (2.1) to
represent the information needed by the device handler. It
is added to the service file (2.3) for the particular device
which may have many such requests waiting to be serviced.
The device handler is notified of each request (2.2). Each
device handler may bave many such requests waiting to be
serviced.

Device Handlers

Each device must have its own device handler to deal

with the peculiarities of each particular device. Also,

N e v Z AR 0.0 3 AN s kil

DEVICE

PARAMETERS BLOCK ID 2.2
NOTIFY REQUEST |
REQUEST DEVICE NOTICE i
BLOCK HANDLER i
i
i i
Bt ‘ E
; DEVICE
¥ SERVICE g
4 LIST g
% DEVICE SERVICE LIST f
y

Figure 22, Initiate Input/Output Request

by et e

each device handler must have its own service file to

maintain the blocks of information which represent service

requests, The difference in devices is dealt with by the
characteristics stored in each descriptor table for the

particular device, Otherwise, the device handlers are

"

v . Cpadadn 1
e e —— e~ .
T e AT Ty P

similar and can share code segments.

Interprocess communication is required to notify the %
device handler when a process is waiting. This i
communication is required of the procedure that puts the
request block in the corresponding device handler.
Likewise, when the operation completes, the device handler
is responsible for notifying the corresponding process that
originated the request., All interprocess communication and

interrupt handling is performed by the nucleus of the

67

5 CaCHEpilitsae. .
% il]

DEVICE SERVICE LIST

BLOCK BLOCK ID

3.3

DELETE
REQUEST REMOVE FROM
NOTICE REQUEST LIST

3.1

BLOCK ID
BLOCK

ouTPUT
DATA

INPUT
DATA

3.4 DATA TRANSLATED
TRANSLATH

DATA

TRANSFER COMPLETE

3.6
NOTIFY
PROCESS

PROCESS NOTIFICATION

Fxecute Device Handler

Figure 23,

operatinn system.,

The device handler removes (3.1) a request block from

(3.2)

the data structure maintaining requests and initiates

the corresponding input/output operation. This is the most

68

e D i R T - Tt P O, TP v T

o e . il <5838 4 AR IAERALY: 30t Nt vt s e ot el W s i i

—

device dependent operation, The device descriptor is
consulted for any information on the device or transfer
4 charateristics., The data is translated (3.4), if necessary,
and then transfered (3.5) as indicated by the request block.
The request block is then deleted from the service file
(3.3). When the operation completes, the device handler is
responsible for notifying the corresponding process that
; originated the request (3.6).

p. Iransfer of Files

IJ The above requirements assume the use of sequential
} devices. Tf this is the case, the name or identifier of the
peripheral device is sufficient information for a given
transfer. However, if random access devices are to be able
to transfer data, a facility must be provided to identify

not only the device but also an area on the device to be

transferred., Disks store information in areas ususally
called files which have an associated unique name, Files
are seldom located sequentially on the disk medium,

The transfer of files is similar to the transfer of
other information with one exception. Additional data
structures are required to store the information on the
file, its location, and other needed information. This file
descriptor is used in addition to the device descriptor when
an input/output request is made. This will become part of
the parameters which made up the request block.

Devices which support files are referred to as file

devices and are 1identified differently than the other

69

R AN Ay AT RO DA AR AR b M il o T R S
——onam

input/output devices. The user requests the file rather
than the device when desiring a transfer, This creates the
file descriptcr that is used for future tranfers. The file
descriptor must include the device the file is stored on,
the associated device descriptor, and the 1location of the

file on the device,

The Scheduler

The scheduler has three primary duties, First, it must
provide for the introduction of new processes. Second, the
scheduler must assign priorities to determine their order of
execution. The dispatcher selects the highest priority to
run but has no input as to the pricrity. This minimizes the

overhead of the dispatcher. Finally, the scheduler must

implement the system allocation policies to maintain a

systen bélance. No system resource should be over-committed

or under-committed. The objective of the scheduler is to
insure all processes obtain the system resources they need
in a "reasonable" amount of time.

It is evident that the performance of the system is
largely dependent on the scheduler and its policies. The

scheduler should, therefore, have a high priority in the

——e e

JOB JOB DATA MANAGE PROCESS PROCESS
SOURCE PROCESSES DATA
STRUCTURE

Figure 24. Schedule Management Context Diagram

A e o i e b TR TGS D, LSS S5 5 i A s i

Table 6

£
e n S s i g

Scheduling_Management g
(Figqure 25) :

1., Create Process (Figure 26)
1.1 Determine Process Image

RS g+ it 3

: 1.2 1Initialize Process
by 1.3 Assign Priority
3 1.4 Schedule New Process
9 2. Execute Scheduler (Figure 27)
£ 2.1 Determine Process Status (Figure 28)
A 2.1.1 Determine Process Status
‘J 2.1.2 Change Status to Runnable
X 2.1.3 Change Status to Unrunnable
{ 2.1.4 Change Status to Running
W 2.1.5 Request Queue Action
& 2,2 Determine Running Process (Figure 29)
R 2.2.1 Determine Queue Priority
j 2.2.2 Determine Process Status 4
:H 2.2.3 Determine Location
. 2.3 Enter Process Queues (Figure 30)
¢ 2.3.1 Select Queue Action 3
- 2.3.2 Delete from Queue i
N 2.3.3 Determine Queue i
i 2.3.4 Add to Wait Queue ¥
L 2.3.5 Add to Ready Queue
3. Execute Memory Swap (Figure 31) j

3.1 Determine Memory Available :
3 3.2 Execute Swap-In |
- 3.3 Execute Swap-Out !
| 3.4 Initiate Swap I/O

system compared to other processes. The dispatcher will

then choose the scheduler whenever it is runnable, The

scheduler is runnable on at least four occasions., When a
new process arrives, when a process terminates, when a
process 1is blocked or wunblocked, and when a process is
preempted, the scheduler should become active,

Notice the similarities bhetween the interrupt handler

and the activities of the scheduler., Fach will occur at f

intervals unpredictable to the system and likely cause

71

- ..:‘M—‘,-M—w‘\w:,.“‘w*»m‘pﬂww-mlwm At o P

NEW JOB

4 CREATE 3 ;
K PROCESS EXECUTE
1 MEMORY
SWAP

SWAP OUT
REQUEST

f PROCESS STRUCTURE
1 1/0 REQUEST

Figure 25. Schedule Management Overview

ﬁﬁ modifications to system behavior, The differences 1lie in
;1 the level of each service. The interrupt handler is a low
; level action affecting the status of processes and
allocation of the processor. The scheduler is a high level
z action affecting the number of processes and their priority.
-~ While interrupts may occur every few milliseconds, a call to

the scheduler may be made only every few seconds.

The three major operations of the scheduler are shown

—

in figure 25. New procesces are created by the scheduler

(1) as they arrive, An attempt is made to enter the new
process into memory and it is passed to the scheduling i
procedure to enter the processor queue, Fach process must
L be prioritized to achieve the desirable system performance.
i This requires selecting the most important process (2) in

the system that is runnable or can be made runnable by the

scheduler. Processes may be swapped (3) into and out o.

72

C e i st SN T VI e g N Al 1 07 Ry

S =5 -
8 memory by the scheduler as demands change and memory becomes
available,
53 Creating the process consists of establishing a process
; descriptor to contain the environment in which the process
3 exists. The image of the process (1l.1) contains
identification of the process and its originator. If the
f} process is new, all datz associated with its running
- environment must be initialized (1.2). Priorities are

assigned (1.3) based on some criteria established to
optimize system response. At this point, the priorities are
based on limited data about the process and may be updated

4 by the scheduler at a later time.

3 n]'1
! NEW JOB (DETERMINE
: PROCESS
IMAGE

MEMORY REQUEST

MEMORY BOUNDS

ENVIRONMENT

1.2 ASSIGN
INITIALIZE PRIORITY
PROCESS 1.3

1.4
SCHEDULE

NEW PROCESS

NEW PROCESS DESCRIPTOR

Figure 26, Create Process

e - - e —

e B an g O O Sl il dimanir . < 1

SWAP REQUEST

NEW
PROCESS

RUN
PROCESS

SWAP OUT
REQUIREMENT

READY QUEUE

WAIT QUEUE

PROCESS
CONDITION

2.3

ENTER
PROCESS
QUEUES

Figure 27. Execute Scheduler

The scheduling procedure has three primary requirements.
The scheduler must determine the status of processes (2.1)
and update the status when a process changes position in the
processor data structure. A running process must be
selected (2.2?) from among the available processes in the
processor data structures, This may involve moving
processes around in the system to get the most important
process running., Finally, the processor data structures
must be manipulated to reflect the status of all processes
in the system (2.3). This involves ordering the processor
queues, determining which process to delete, and which to
add in each queue,

Determining the status of processes requires the

scheduler to be activated when a process is blocked,

74

» f N .
- A aheatoh SAN S Al S % AW 3 e, e . 8 L i A

RUN PROCESS ID

2.1.4
PREEMPTED CHANGE
PROCESS

RUNMING

RUNNABLE
PROCESS ID

READY QUEUE

: RUNNABLE
NEW PROCESS DETERMINFE STATUS
PROCESS
STATUS

2.1.5

UNRUNNABLE REQUEST
PROCESS ID QUEUE
ACTION

BLOCKED 3 PROCESS
PROCESS UNRUNNABLE CONDITION
STATUS

Figure 28, Determine Process Status

unblocked, terminated, preempted, or a new process enters
the system. Process condition must checked to determine if

it is currently in memory (2.1.1). Processes in memory or

preempted processes are changed to a runnable status

(2.1.2). Blocked, terminated or other processes not in
memory are changed to an unrunnalbe status (2.1.3) . The
process most eligible to run is changed to running status
(2.1.4) in the ready queue where the dispatcher can allocate
it to the processor. All process changes that require a

move in the processor data structure (2.1.5) are

75

QUEUE
PRIORITY

QUEUE
STATUS

READY QUEUE
PRIORITIES

RUN PROCESS

2.2.3
DETERMIN
OCATION

PRIORITY

WAIT QUEUE
PRIORITIES

SWAP
REQUEST

SWAP~OUT
REQUIREMENT

Figure 29, Determine Running Process

determined by the status conditions of the respective
process,

Determinig the running process is accomplished by
inspecting the processor queues for the highest priority.
Both runnable and unrunnable processes are checked for
priority (2.2,1). The highest priority process is inspected
for status (2.2.2) to determine if it is runnable or can be
made runnable. If runnable, the process is selected to be
the running process and if a swap is necessary the swap-in
is requested (2.2.3).

Entering the processor queuves is based on the priority

and status of the processes. A determination must be made

AT —— .,y AT - g

..... dadio o it s QN Mt A L s S e A v AR e

QUEUE
REQUEST

PROCESS INFO

READY QUEUE

WIAIT QUEUE

READY
QUEUE
INFO

Fiqgure 30, Enter Processor Queues

3 what action is required on the process and what queue is
affected. (2.3.1). Processes moving from one queue
structure to another must first be deleted (2.3.2) from the

respective queue and a determination made what queue the

s e e

process is to enter (2.3.3) based on status. Priorities for

the wait queue for unrunnable processes (2.3.4) may vary

from the processes entering (2.3.5) the ready queue for

runnable processes.

The major data associated with a process is moved to

and from main memory as needed. Since main nmemory is
limited, and a process cannot execute unless it is in main ;

memory, the scheduler must decide when to swap a process

71

SWAP-IN
REQUEST

MEMORY REQUEST

3.1

DETERMINE
MEMORY

AVAILABLE

MEMORY RESPONSE

SWAP APPROVAL

SWAP-OUT
REQUIREMENT

"SWAP-IN INFO

1/0
REQUEST

3.4
INITIATE
SWAP 1/0

SWAP-0OUT
REQUEST

3.3
EXECUTE
SWAP-0OUT

SWAP-OUT INFO

Figure 31. Swap Process

between secondary storage and main memory. When the

scheduler selects a process to run which is not in memory it

requests a swap-in. The swapping procedure determines the

amount of memory needed to swap-in the process (3.1). A 3

request is made to the memory manager. If enough memory is

If main memory is

availble the swap-in is initiated (3.2).

full, the swap procedure informs the scheduler. The

scheduler must decide what process to swap out to make room

and informs the swap procedure to initiate a swap-out (3.3).

accomplished by activating an input/output

Swapping 1is

request (2.4) with the associated information,

78

S e, MMt - STV TR A AN | I DR A By SRR s T

Memory Management

For mutiprogramming, it is necessary for more than one
2 process to bhave access to the processor. This requires
several independent programs to reside in main memory
simultaneously, so the processor can be switched between
them. The programs must not interfer with each other, must
:j be removed when terminated, and new programs must be given
¥ access to available memory when required.

In a multiprogrammed computer it is impossible for the
user to know where each process is in memory. This means
the exact location of the user process is unknown, it cannot
be written in terms of absolute memory addresses. If the

memory allocated to a process remained fixed during its

entire execution it would be possible to transform symbolic

or relative addresses into absolute addresses at the time

i . .
| SR .

Sty 7 T R P TR g - ¢

e the program was loaded, but this is seldom the case. As

processes run to termination the memory they use becomes

free for other processes. They exist in a dynamic system.
?1 The system must be responsible for transforming the

addresses used by the user into the actual addresses in

SCHEDULER PROCESS

NEEDS

MANAGE
MEMORY

PROCESS
DATA

MEMORY

MEMORY RECORD

Figure 32, Memory Management ContextDiagram

79

e S IS | A NI M Dbl s RIS AR it 31 A AR BLCS ir A R o B) - b TR o

s -

Table 7

Memory Management
(Figure 33)

1. Determine Need
2. Select Area ' (Figure 34)

2.1 Examine Free Area

2.2 Compare Area with Size

2.3 Update Free Area Table
f! 3. Assign Area
4. Record Bounds of -Process
5. Deallocate Memory (Figure 35)

5.1 Match Entry with Process
; 5.2 Update Memory Table
£ 5.3 BAdjust Free Space Table
which the process is physically located.

Memory management involves the administering of primary

memory to processes and data where it can be accessed by the

processor. This generally requires four actions by the

memory manager: the allocation of memory, record keeping
involved with how the memory 1is allocated, a protection
policy to prevent processes from interfering, and the

deallocation of memory after the process terminates (Ref.

28: 105),

After the memory need is determined, an area is
selected for the process in memory (2). Once an area |is
selected the process must be assigned that area (3) by
recording the process, memory size, locations and bounds in
a memory table. The process must also be aware of its own
memory bounds by writing to the process descriptor of the
requesting process (4). When the process terminates the

memory used must be deallocated (5) and the memory table

80

. e oy ooz g

L ool

i

e

s I

(;

S eoare il

PROCESS NEFDS

5
DEALLOCATE
DEALLOCATE MEMORY
REQUEST

MEMORY MAP TABLE

3
ASSIGN
AREA

PROCESS
MAP

PROCESS BOUNDS
4
RECORD
PROCESS
BOUNDS

MEMORY
BOUNDS

Figure 33, Memory Management

is updated.

Main memory is partitioned into blocks of memory.
These blocks may be a fixed size or a variable size. BRlock
size can be static and determined by the system or dynamic
and vary with the size of the need. These are issues
determined in design. The primary difference between these
methods is that a program entering memory may be in a
contiguous memory space or may be divided among several

different noncontiguous blocks, Fowever, in any case, a

list of free memory space must be maintained. When a

process is requesting memory, the free space is examined

8l

e R Ty T o s = e 7 e (T TS AT s < o s P

gy e et

i AR e STt A e O W ST N 5 et A vy Wi w2 <

T —.

FREE SPACE TABLE

2.3
UPDATE

2.1
EXAMINE
FREE
AREA

4 FREE AREA
SIZE

PROCESS SIZE PROCESS MAP

& o4
NO FIT MESSAGE

f: Figure 34, Select Free Area

¥ (2.1) for a 1large enough space, either contigquous or
noncontiguous, depending on the algorithm. Fach free space
is compared with the size needed (2.2). If a large enough

area cannot be found, a response from the system is

required, Tf a free area is identified, the free space must
be updated (2.3) before the actual assignment is made to the
memory table.

Deallocation simply involves matching a process with an
entry in the memory table (5.1) and updating the
corresponding entry (5.2). The area deallocated is added to
the free area (5.3).

A great deal of overhead can be involved in the

allocation of memory, Usually, the greater the memory

82

* B .] o
e B AR B AR e M‘r-\"m«» .-

L A AN N ARl .

MENORY MAP TABLE

:1

-~
5.1
MATCH

5.2
UFDATE
MEMORY

FROCES! 3
~—____\FROCESS TABLE /
PROCESS ID ™ AREA "/

PARAMETERS FREE SPACE TABLE

5.3
ADJUST
FREE

SPACE

5 Figure 35. Deallocation Memory Space

utilization, the greater the overhead. The price paid for

- | simplicity is that some memory space will be unused.
Fragmentation is the condition resulting when leftover
sections of memory are too small to £ill allocation requests

(Ref. 51: 69). There are many algorithms for dealing with

= fragmentation and memory management, Madnick (Ref. 28)

presents one of the best comparisions between different

schemes,

Nucleus Requirements

The facilities exist at the center of the system which
interfaces directly with the hardware itself. This is the
most machine dependent part of the system and is the major
interface between the operating system and the machine.

This inner-most layer is commonly referred to as the

83

O b o oo et Attt A= B B 5 It) S S SN s s

PROCESS
ENVIRONMENT

INTERRUPT INTERRUPT INTERFACE
SOURCE ID HARDWARE CPU

3 PROCESS STATE

£ PROCESS STRUCTURES

Figure 36. Mucleus Context Diagram

. Table 8

» Nucleus Composition
(Figure 37)

| 1. Dispatch Process (Figure 38)
F 1.1 Test for Current Process

| 1.2 Update Processor State

' 1.3 Record Processor State

2. Interprocess Communication (Figure 39 and 40)
2.1 Lock CPU
2.2 Block Process
2.3 Awaken Process
2.4 Unlock CPU

3. Execute Interrupt (Figure 41 and 42)
3.1 Save CPU State

Identify Interrupt Source

Determine Priority

Disable Lower Priorities

Determine Routine Location

Service Interrupt

Restore CPU State

WWWwwWwww
.

SN BWN

"nucleus”. The functions of a nucleus vary among designs,
Because it is so hardware dependent, no clear definition
exists for the explicit functions of a nucleus. For this
effort, the nucleus will be required to handle interrupts, i

provide the mechanisms for interprocess

84

i A L o 3400 It 2t - = e b s SR U S il 0V

G ATt e - o o

.

PROCESS
ENVIRONMENT

INTERRUPT ID

DISPATCH
PROCESS
1

PROCESS STRUCTURES

PROCESS
STATES

3
PROCESS
COMMUN-
ICATION

Figure 37. Nucleus Overview Diagram

communications, and switch the processor between processes.

Dispatcher Requirements

The requirements of the dispatcher are to allocate the
processor to the most eligible process. It 1is called
whenever the currently executing process cannot continue to
run or a change to the system has indicated the processcr
should run another process. This may be caused by a status
change of the running process or an error condition.
Actually, these are all interrupt conditions, thus, the
dispatcher must be entered after all interrupts to determine
the best process to allocate the processor to. Granted, the
dispatcher may not need to be consulted after each
interrupt, but in this manner each interrupt is treated
uniformly and the overhead is justified.

The requirements of the dispatcher are relatively

simple. Tt tests the current process on the processcr to

85

‘AD-A115 618 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO=-=ETC F/6 9/2
DES!SN AND DEVELOPHENT OF A MULTIPROGRAMMING OPERATING SYSTEM F——ETC(U)
81 M 5 ROSS
UNCLASSIFIED kFlT/GCS/EE/BlD-l“

"

— __m

R Y TR RO T o wnE ey - A e e sl

PROCESS STATUS

PROCESSOR QUEUE

PROCESSOR STATES

CPU DESCRIPTOR

PROCESS
CURRENT ID

PROCESS

-

PROCESS
DESCRIPTOR

RUNNABLE PROCESS STATE

Figure 38, Dispatch Process

see if it is the highest priority available (1.1). 1f so,

the dispatcher will return control to the system as stored

before the interrupt was serviced (1.2?). If not, the
dispatcher will save the current system state associated
with the current process (1.3) and retrieve the system state
of the higher priority process. Next, control is
transferred to accomodate the new running procese (1.2).

The dispatcher does not determine priorities. It
assumes each process has an assigned priority associated
with it wbhich wa: assigned by the scheduler at a higher
level. The dispatcher must bave access to the data

structure the processes are stored in. Tf the processes are

86

— e R e -

f

[}

BT v T .. Vb e Vs AN eEe

stored in a queuve fashion and ordered by priority, then the
dispatcher is able to simply select the process £from the
front of the queue, This may or may not be the current
running process,

Since an interrupt may effect the status of a process
in the system, it is a requirement for each interrupt
routine to update the status of the process., The routine
must also place it in the processor queue according to the

proper priority,

Interprocess Commupication

Because a number of processes are operating
concurrently in the system, a requirement exists for some
means of communication between processés. This mechanism
must be in the nucleus bécause all processes must have
access to it. Also, in order for the mechanism to block or
awaken a process it must have immediate access to the
dispatcher and interrupt handler. Tt is necessary to block
and awaken processes (2.2 and 2,3) for three reasons:
deadlock avoidance, critical sections, and syncronization,

Deadlock is a condition in which processes are waiting
indefinitely for events that will never occur (Ref. 16:
336). A deadlock condition involves the circular waiting of
processes, Fach process is waiting on the resource of
another process, Since they are all waiting on another to
resolve the condition, they are all unable to continue,

Hansen (Ref. 16) gives a complete discussion of deadlock

87

PROCESS CONDITIONS

PROCESS STATUS

Figure 39, Interprocess Communication

avoidance as well as a thorough collection of literature
sources,

Mutual exclusion (Ref. 43: 62) is the condition where
certain processes are prevented from executing other
processes., For example, when several processes
asynchronously change the contents of a common data area, it
is necessary to protect the data from simultaneous access
and change by two or more processes, The solution is to
prevent more than one process from entering the "critical
section”,

Syncronization 1is required among processes because
certain processes cannot execute until others have occurred.
Process syncronization introduces the concept of time and
order among processes (Ref, 28: 247).

Depending on the data structure used, blocked processes
may or may not be prioritized. Because processes may be
blocked for a number of reasons it may be desirable to have

different: data structures for blocked processes. A

LA _ Al > ol v nj bty

5o ik

first-in-first-out arrangement may be sufficient for some

applications and a prioritized queue for others.

CpPU

Figure 40. -Lock and Unlock CPU

A lock and unlock procedure (2.1 and 2.4) must be
provided to the interprocess communication mechanism to
prevent more than one process from executing them at the
same time. A process must not be able to lose the processor
while executing interprocess communication. This will
insure the block and awake mechanisms are indivisable

operations,

Interrupt Handler

The interrupt handler is responsible for responding to
all interrupts, both internal and external.
Multiprogramming systems, especially timesharing systems,
depend heavily on interrupt mechanisms for scheduling,
input/output devices and system response to user requests.
The interrupt handler must be able to identify the source of
the interrupt and direct the processor to the correct
routine to service the request. Generally, there are two

categories of interrupts: internal, which are generated by

89

AT TR R

v M4

B e S U— ... - m——— A g

the system; and external, which are generated by peripheral
devices., Their differences in handling are a design issue
and will be discussed at a later point,

Many architectures provide a means for handling
interrupts, their priorities, service routines, and
identification, Recause of the response desired in a
timesharing system, and the overhead of handling interrupts,
they are best implemented in hardware. Bowever, any
requirements which cannot be met by the hardware
architecture must be implemented by software routines.

The first action by the interrupt handler is to save
the system state at the time of the interrupt (3.1). After
the interrupt is serviced (3.6) the system will return to
this state (3.7) and continue as it was before the interrupt
occurred, However, if the interrupt caused a condition to
occur which altered the priorities of the system, another
process may be selected to run after the interrupt. After

the interrupt handler has saved the system state,

PROCESSOR
REGISTERS

3.1
SAVE CPU
STATE

3.7
RESTORE

PROCESSOR STACK

Figure 41. BSave and Restore CPU State

90

VECTOR TABLE

SOURCE ID

HIGHEST INTERRUPT
ROUTINE
PRIORITY

CURRENT
PRIORITY
PROCESS
3.4 STATUS
DISABLE CHANGE
- SERVICE
INTERRUP

DISABLE MESSAGE

AN 5 8 5 et 3 A 32 I RIS e .~ NI, T 5

Figure 42, Interrupt Handler

the source of the interrupt must be determined (3.2).
Because several interrupts may occur in a short span of

time, a priority scheme must be organized to determine which

interrupt should be serviced first (3.3). Depending on the

processor architecture, this is most easily done in
hardware. When a high order interrupt is being serviced,
other interrupts may be ignored (3.4) or stored until the
high priority interrupt |is complete. Righ priority
interrupts may yield to higher priority interrupts.
Consideration must be given to the type, importance, and

source of the interrupt when determining priorities. The

91

R i e O T LT

o —— i e
—— e e e o i Rl

‘4..-

.
i v e A T T o il s I i 42

:
}
§

routines should be identified by mapping the interrupt to an
address from a vector interrupt table (3.5).

Servicing the interrupt (3.6) is dependent on the type
of interrupt involved., Fach interrupt routine will perform
a different task and may have a different effect on the
system, For example, an interrupt to change running
processes will alter the status of processes waiting for
service and save the CPU status of the current process,
However, it is important to keep the interrupt routines as
short as possible since they must run in supervisor mode and
run with interrupts disabled or ©partially disabled.
Otherwise, system response may suffer,

It is likely that the occurrance of an interrupt will
alter the state or status of some process. For this reason,
the interrupt handler must have access to the process
structures, As a result, the current process in the system
may not be the best choice of all processes to run.
Therefore, the dispatcher must be consulted after an

interrupt occurs and the system is ready to run,

Summary

This chapter has addressed the hardware and software
requirements of the timesharing operating system under
development. The specifications have been involved and
detailed in some areas and general in others. The use of
data flow diagrams becomes a lengthly process in a large
software effort such as this. However, the benefits derived

from addressing the system at a hldh level of abstraction

92

rptemman.

makes the system easier to understand - an important
funtional requirement, Structured analysis provides the
partitioning and modularity required for a large system to
be properly designed.

Appendix E provides the explanation of processes, data
bases,.and data flows in the form of a data dictionary (Ref.
57: 150) to complete the specification. The data dictionary
defines terms of the data - flow diagrams for the systems
development. The data dictionary and data flows form the

foundation for the design in Chapter Five.

a3

F N T T FRNON. P P R T R RN

arvite ik v

R T

V. The Operating System Desigp _Specification

T o

: 1 Introduction

Earlier chapters discussed the functional requirements
and transformed them into system requirements by means of a
structured specification. This chapter considers the
structured software specification, hardware constréints, and
background in operating sYstems to develop a design for the
8086 operating system.

The data flow diagrams from Chapter Four are

transformed into module structure charts using structured

design techniques as given by Weinberg (Ref. 57). By
distinguishing data from control, a structure chart clearly
indicates switches in the system. A structure chart also

shows major loops and decisions in the system.

Hardware Design

One important hardware requirement is tor interrupt

handling. The 8086 has three types of interrupts:

predefined which are functional within the 8086, user
defined hardware interrupts, and software interrupts (Ref.

41: 8-30).

The CPU support card (see Appendix D) can handle up to
sixty-four interrupt sources by cascading 1lines on thé
support card (Ref. 50: 6). The support card uses a 8259A
programmable interrupt controller which is specifically
designed for real time applications and controls priorities,

vectoring, and rcascading of interrupts (Ref. 21: B-107).

a 94

e AR R Wk L kel

A PROGRAM
INTERRUPT 2 ——a= !
, INTERRUPT
4 ROUTINE
- 2
1
3 INTERRUPT 1 ——
3 INTERRUPT
ROUTINE
1
RETURN
f
-J
RETURN
3 _
PROGRAM

i

g

N Figure 43. 1Interaction of Nested Interrupts
|
|

Figure 43 shows how interrupts are cascaded to allow

i

higher priority events precedence, When an interrupt
arrives, the execution program is suspended and the
interrupt is vectored to an interrupt routine. Higher #

priority interrupts can execute by overriding lower

interrupts. Interrupts are only acknowledged, howver, if
the microprocessor bhas previously executed an enable
interrupt instruction. This allows some degree of

protection for critical sections of interrupt routines.

95

5
;’
'é

S i o
il i

ithid

v e, o g A
. ‘w . PUAR
RS E. AR AP S Wi

e o g Néhdﬁﬁgﬂw*m'“‘h“*‘“‘»h'?fu&n g G0 I R e Y T I . I T R

If an interrupt occurs while servicing a higher
priority interrupt, it is recorded by the 8259A and serviced
after the high priority interrupt. When allowing interrupts
of several priorities to occur and interrupt one another,
care must be taken to store the program registers of the
interrupted process in different locations according to
priority level of the interrupt received,

The 8086 requires each interrupt to have a number
associated with it, The interrupt number indentifies the
vector within the interrupt vector table. The interrupt
number multiplied by four will give the address (absolute
address) of the interrupt entry. Thus, the interrupt
structure allows specification of the memory address for
every interrupt service routine,

The lock and unlock mechanisms to provide
indivisibility for the block and awaken mechanisms are best
implemented by disabling and enabling interrupts. This will
quarantee no process can lose control of block and awaken
because there 1is no way to interrupt them. This will work

only on a uniprocessor system however.

Memory Management Desigp

The addresses of processes are contained in memory
based tables called process descriptors. The processor has
the abliity to access these structures as the processes are
activated. The descriptors contain all information
necessary to describe the process to the system,

particularly, the addressable environment of the process.

96

Gl

i, iRt e i PRI, UIBALATIIN AN 7 - 5 S LM e el om0 ey e S M e e il AN Dt s e s dr o8k s s e e i om0

The 8NPE computes memory addresses by summing the
contents of a =segment register and an effective memory
address (Ref, A1:3-30)., Segment registers are shifted left
four bits and added to the effective address to get the
actual address, The result is a twenty~-bit address, or one
megabyte capability. The 8086 address is composed of two
addresses, the segment address and the effective address
(referred to as the offéet address). The segment register
then contains the physical base address of the segment. The
address space can then be viewed as a wvirtually unlimited
number of segments up to one megabyte. However, the actual
number of segments is 1limited by size and the physical
addressability, The 8086 has four segment registers for
immediate access to four types of segments without changing
a segment register,

Figure 44 shows the method developed for memory
protection and addressing. The addressable environment of:
the process is contained in the process descriptor as a base
address, upper 1limit of the process, and address with the
segment as an offset register. These values are loaded into
the processor when a new process is activated. The base
value 1is 1loaded into the offset register and the desired
process address is loaded into the offset register, A
comparision is made to determine if each address is within
bounds for the process by checking the limit with the offset

register,

The disadvantage of this method is the processor

Y g v

R S e A g, kT 4R

PROCESS
LIMIT

" DESCRIPTOR

OFFSET REGISTER

PROCESS h
OFFSET REGISTER

- DESCRIPTOR
BASE REGISTER

R

+

—

L PROCESS 4)

PROCESS
BASE REGISTER \

(‘ DESCRIPTOR

LIMIT
r A AY GJ
\: et —————
S, - J
PROCESS
L DESCRIPTOR

DESCRIPTOR

PROCESS
DESCRIPTOR

MAIN MEMORY

significant

Figure 44,

Memory Addressing and Protection

overhead of checking each process address. However,
protection is the benefit. Tf additional
overhead can be tolerated, further checks can be made in the
process descriptor for process types, access rights and

layers of access, A further extension of this method can

98

QR ek i

provide a mnrtlbed of virtual memory space (Ref. 32: 64),

The suprort carcd has five programmable timers. One is
dedicated to providing baud rates to the serial input/output
ports. The other four are general purpose counters
implemented by the 9513 system timing controller chip (Ref.
50: 24). The counting of the clocks is software controlled
by programming the 9513. Commands available include ARM to
enable the counter, LOAD to load the counter with the
desired value, and DISARM to disable the counter,

The timing needed for preemptive scheduling can be
provided by enabling the counter when a new process is
dispatched to run. When the process finishes its timeslice,
the counter issues an interrupt. A new process is selected
to run and the counter is loaded with the time quantum and
enabled again. If a process is interrupted by an external
source while running, the counter can be disarmed and
rearmed again when the running process continues if it is

the same process.

Software Design Specification

The design of the software was accomplished by using
the methods presented by Weinberg (Ref. 57: 134-167) which
is based on the work of Yourdon and Constantine (Ref. 59).
This involves the transformation of the data flow diagrams

developed in Chapter Four to structure charts by means of

transform centered design (Ref. 57: 176) and transaction

ALPHA
MODULE ALPHA CALLS MODULE
J t BETA. MODULE ALPHA PASSED
j I TO BETA, MODULE BETA
2 FLAG RETURNS 3 AND FLAG TO MODULE
ALPHA,

MODULE ALPHA CALLS MODULE

4
BETA BASED ON A MAJOR
DECISION AND CALLS GAMMA

BASED ON A MAJOR LOOP,
GAMMA

Figure 45. Structure Chart Notation

analysis (Ref. 57: 182). A structure chart indicates
loops, decisions and switches in the system not indicated by
data flow diagrams, Most of all, structure charts provide
the design reviewer with a document that serves as the focus
of design evaluation provided the modules, interfaces, and
functions are rigorously defined in a data dictionary.

Structure Charts

Figure 45 indicates the symbols used in a structure
chart, It is understood that the called module returns to
the calling module. The called module may return coétrol or
data information. Control information 1is indicated by a
solid circle and data information is represented by an open

circle. This representation of the structure chart

100

e b ol SRl e miaan (11

e gy

Orm——

it AN PR o Sy R igimarde i e e Ao

illustrates two properties. First, the hierarchical modular
structure is clearly indicated and second, the module
function and communication in the structure is cleary shown.

The horizontal placement of module has no particular
influence on the order of execution. This is important ¢to
note because two structures charts can represent the same
data flow and yet physically appear entirely different,

Perhaps the most impértant function of the structure
chart 1is that 1is facilitates change. Since it identifies
input, outputs, processes and control very clearly, the
modules affected by a desired change are easily identified.
Thus, just as a data flow diagram indicates the system's
logical design, the structure chart represents the physical
design.

Structure chart symbology may include reference to
pathological connections when one module references data
defined in another module or when a module does not return
to a calling module, This is undesirable and should be
avoided if at all possible. Yourdon and Constantine discuss
the treatment of pat.aological situations (Ref. 59:
235-249) .,

Iransform Ceptered Design_apd Transaction Analysis

Transform centered design is a modular design strategy
that specifies building a system around the data flow
conception, This approach requires a top level module to
call for processed logical input, and lower level modules to

transform phyvsical input into logical input and logical

101

s

CENTRAL
AFFERENT TRAN SFORM EFFERENT

MAIN
MODULE
o "a
c¥|to §
GET PUT
c 3 D
L \ ’f / ?
fg/fs\x?c 9/63 \TE
GET PUT
B 2 4 E
£ n
Af &Qoss VE/fF \XiF
GET PUT
A 1 5 F

Fiqure 46. Transform Centered Design

output into physical output.

To develop structure charts from data f;ows using
transform centered design, the major input and output data
streams must be identifed. The input data stream is traced

until it bhas reached a high abstract level where it is no

longer considered input. This is the afferent branch, The

ee teadant CAE. O MMM L T CREC

output data stream is traced backward until it can no longer
be considered output. This 1is the efferent branch. The
remaining portion of the data flow in the middle is the
central transform., This process 1is called factoring,)
Factoring of the afferent branch, efferent branch, and
central transforms is continued until the entire data flow
is transformed to a structure chart., A simplified example
is shown in figure 46.

Transaction analysis is another modular design strategy

that builds a design around the concept of a transaction. A
transaction is any element of data that sets off a sequence
of actions, Data flow diagrams that fan out to do
processing by transaction type strongly suggest transaction
analysis., The resulting structure chart typically
demonstrates a significant deqree of fan-in and fan-out
(Ref. 57: 185).

Both transaction analysis and trunsform centered design

can be applied to the same data flow diagram if it
demonstrates the properties of each technique. The
resulting structure chart for this system provides a strong
foundation from which subsequent design revision cén be made
judiciously. However, it should be kept in mind that the
derived structure chart is not a final design effort. It is
a first draft of a module design. Weinberg addresses
additional design criteria to be considered such as

cohesion, coupling, scope of effect, scope of control, and

morphology to be considered to identify potential weaknesses

in a hierarchical structure (Ref. 57: 187-231),

The complete set of structure charts is located in
Appendix F. Additional data dictionary entries were added
to Appendix E to compensate the added data and processes
derived when constructing the charts., Additional design
decisions and policies are discussed in the following

sections.

Interprocess Communications

The operations block and awaken are developed by using
semaphores (Ref. 8). The choice of semaphores is based on
the widespread use and understanding of semaphore
implémentation.

The block operation implies a process is blocked when a
semaphore is zero and freed when an awaken operation
increments the value to one, The easiest method of
implementation is a semaphore queue., When a block operation

is performed on a zero value semaphore, the process is added

to a gqueue and is made unrunnable. Conversely, when an

awaken operation is performed on a norempty queue, a process
is taken off the queue and made runnable.

Semaphore queues may be organized as first-in-first-out
or pricritized. Different queue organizations may apply to
each resource. The structure of the semaphore must contain
three items, the semaphore integer, the type of queue
organization, and a pointer to the queue,

As discussed earlier, block and awaken must be

indivisible rrocesses, If interrupted during execution

104

tead

T S Wi 1 akiset =

.. i i

. i

their values can easily be mistaken., On a single processor
system, the easiest method of guaranteeing indivisibility is
to disable interrupts. Since the execution of the semaphore
mechanism is very short, interrupts will be disabled for a

very short time.

Schedul ing Mapagemept

The scheduler must decide which process gets priority
in the processor queue. Assignment of priority to system
processes " is performed by the scheduler based on the
expected response time., For example disk processes have
higher priority than printer processes. However, it has
been observed that system priorities have little impact on
performance (Ref. 54: 1937). The user process priorities
are lower than the lowest system priority. Thus, all system
processes are selected to run before user processes. The
user process is assigned a priority based on the ratio of
processor time to real time used by the process and updated
each time quantum. UNIX uses a similar ratio but updates
every second.

Since interactive processes are characterized by a low
ratio, interactive response 1is desirably 1low. A high
priority process cannot dominate the processor because its
priority will drop as more compute time is accumulated, thus
producing a desirable feedback situation. Likewise, a low
priority process will not be ignored because as real time
increases its priority will rise.

The dispatcher overhead is minimized by selecting the

105

N
4
o
R
Y
4

i e i e 1 vl sare e MR e 2 5

DEVICE
DESCRIPTOR

ID

NEXT DEVICE

N R D oo p REQUEST BLOCK
PTOR

STATUS MODE
CHARACTERISTICS _ ERROR CONDITION
SEMAPHORE DESTINATION

REQUEST PENDING
ORIGINATING
SEMAPHORE PROCESS
OPERATION COMPLETE
SEMAPHORE
DEVICE REQUEST SERVICED
REQUEST QUEUE
NEXT REQUEST
CURRENT PROCESS BLOCK
DESCRIPTOR "L—\\ﬁk
CURRENT REQUEST
BLOCK 0’"—‘__er
TRAN SLATION '
TABLES

Figure 47. Input/output Data Structures.

front process in the ready queue. The scheduler performs
all prioritizing and manipulation of the queue to place the

higher priority job up-front.

Input/Output Management

As mentioned in the requirements for input/output
management, a device handler is responsible for servicing
requests on the queue and notifing the requesting process

when a transfer is complete., Figure 47 indicates the data

106

i

Tharsis KR sl

P~ ety S emtoonrd A Pl 5D i

structure diagram for the device descriptor and associated
request blocks which are dealt with by the device
descriptor, |

A separate device descriptor exists for each device.
Request blocks are added as processes request service from
the device., The semaphore, request pending, is signaled by
the procedure each time it puts a request block on the
queue, If the queue is empty the semaphore will be zero,
The semaphore, operation complete, 1is signaled by the
interrupt routine after an interrupt is generated for the
device.
Conclusions

This chapter has developed a concept of design from the
requirements of earlier chapters. The hardware design
concentrates on the interrupt structure, timing mechanisms,
and memory addressing scheme. The techniques specified by
Weinberg were used to transform the data flow diagrams into
module structure charts to yield a software design based on

the structured specification.

107

VI. Conclusions and Recommendations

This investigation has concerned the development of an
operating system based on several objectives., First, an
operating system must be friendly to the user, that is, a
user must be able to communicate his needs easily to the
computer and the computer must respond in a manner explicit
to the user, whether novice or expert. Second, when
deciding between simplicity and efficiency} simplicity
should come out the winner. Third, ease of understanding
should guide the system design and ease of use should guide
the user interface.

To support user friendliness, detailed functional
requirements of the man-machine interface have been
presented. Fxisting systems have also been studied to
examine existing user environments.

An attempt has been made to keep the development simple
by using known tools such as semaphores, hierarchical
levels, and common operating system structures. The complex
nature of an operating system makes it difficult to simplify
certain issues and as a result some over simplification may
have resulted.

Fase of understanding is essential in a large software
effort such as this. The structured specification was the
most time-consuming portion of the research and the most
productive as well. The development of the design
progressed easily because a significant amount of

partitioning was completed in the structured specification.

jos

——— - R

e - o —a —— —— e tp——

The techniques of structured analysis are highly recommended
for any such effort, Fase of understanding impacts directly
on ease of implementation.

In summary, existing operating systems have been
studied, and functional requirements specified for a
productive and friendly user environment. Ry using
structured analysis techniques, the system requirements were
specified and module struc¢ture charts were developed. The
structured specification, though time consuming, produced an
understandable development of the system requirements.

Certain assumptions were made during this
investigation. Tt was assumed that interrupt routines
existed to drive input/output devices. All cother interrupt
routines such as those to handle error conditions and
preemptive scheduling were also assumed. Command routines
were taken for granted. The position was taken that an
environment is provided by the operating system which
flexibly supports command routines. However, the command
itself is part of an applications layer in the operating
system and not an integral part of the system (Ref. 29:

47-55) .

Recommendations

Several areas must still be addressed before
implementation can take place. To simplify much of the
design in this stage of development, many of the structured
specifications were not detailed down to the lowest level.

The partitioning of the design must continue before

109

R L s ORI L bl 1R eniide SRt

implementation can take place.

Operating system commands must be developed in more
detail. The interrupt rountines that have been assumed must
be designed and interfaced,

No input/output buffering has been specified, If a
process is performing repeated transfers on the same device
it will repeatedly be suspended while the transfers take
place. In order to avoid this overhead, input/output
buffering should be developed.

No provision for spooling is currently designed.
During periods of high demand some input/output devices may

become heavily 1loaded and the processes may be forced to

wait for release. Input/output spooling should be developed

*j to spread the 1load on heavily used devices such as a
: printer.

The major advantage of modern timesharing systems is to
| provide a workbench, so to speak, for the programmer. To
extend this research to the point where it may be considered

a programmer's workbench the following features would be

necessary:

’ (1) At least one programming language,

(2) Complete set of commands for running, testing,

! and modification of programs,

(3) A run-time interface that may intersect with
the command langquage,

(4) Provisions for the sharing, maintenance, and
protection of files, to include the ability
to define sharing rights between groups of
users,

(5) Provide unattended operation of any given
program,

(6) The ability to pass arguments between commands,

(7) The capability to form working dialects for a
specialized group of users.

110

Oy Y -«..‘aﬂ<'m~'.ﬁ&mm~-;w NI N ATl (AN D ar MR ot i D a3 . e L 0 . A

Each of these can develop into a major research effort.
,: Some provisions have already been made for 4, and several of
: the others have been alluded to,

A research effort involving a subject as detailed as
i; operating system design becomes not only quite deep, but
broad as well. It is suggested that future efforts by
single reseachers be narrow topics, This approach should

allow the depth of study necessary without the distraction

of a wider subject area.

P ——_—

111

0 el Nt 15 Sl S s ML L D s v A P, asn A lins

Bibliography

Bard, VY, "Performance Criteria and Measurement of a :
Time-Sharing System", IBM Systems Journal, 10: 193-216 ;
(1971). !

i

2. Bobrow, Daniel G. "TENEX, a Paged Time-Sharing System
L for the PDP-10," Communications of the ACM, 15: 135-143
(March 1972).

2 3. Boldyreff, Cornelia. "UNIX on a Mirco," Sigsmall
i Newsletter, 7: 7-8 (February 1981).

TP A Y A £ o 0%

?J 4, Bourne, S. R. "The UNIX Shell," Bell System Technical
\ Journal, 57: 1971-1990 (July-August 1978).

& 5. Browne, James C, "The Interaction of Operating Systems
4 and Software Engineering," Proceedings of the IEEE, 68:
‘;’ 1045-1049 (September 198C).

¥ 6. Cheriton, D. R. "Man-Machine Interface Design for
Time-Sharing Systems," Proceedings ACM Conference,
362-380 (1976).

7. Coffman, FEdward and Peter Denning. QOperating System
Theory, New Jersey: Prentice-Hall, 1973.

T a7 Aty BN~ ARt P = P

Dijkstra, E. W. "Cooperating Sequential Process,”
i Y. Genuys, Editor. ©New York:

Academic Press, 1968.

9. Dijkstra, E. W. "The Structure of T.H.E,
Multiprogramming System,"” Communications of the ACM,
11: 341-346 (May 1968).

Dzida, We, S. Rerda and W. D. Jtzfeldt.
"User-Perceived OQuality of Interactive Systems," IEEE

ions on Software Engineering, 4: 270-276 (July

1978).

11, Fitter, M, "Towards More Natural Interactive Systems,"

of Man-Machipne Studies, 11:

International Journal
339-350 (January 1979).

12, Freeman, Peter. Software Systems Principles. Chicago:
Science Research Assocjiates, 1975.

T R O P AR g P T

13, Gaines, Brian R. and Pater V. Facey., "Some Experience
in Interactive System Development," Proceedings of the
IEEE, 6: 894-911 (June 1975).

14, Greenburg, Robert B, "The UNIX Operating System and
: the XENIX Standard Operating Environment," Byte, 6:

112

15.

16.

17.

18.

19,

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

248-264 (June 1981).

Hansen, Brinch, "The Nucleus of a Multiprogramming
System," Communications of the ACM, 13: 238-241 (April
1970).

Bansen, Brinch. Principles of Operating Systems, New
Jersey: Prentice-~Hall, 1973,

Hayes, Phil et al. "Breaking the Man-Machine
Communication Barrier," Computer, 14: 19-27, (March
1081).

Hellerman, Herbert and T. F. Conroy. Computer System
Performance, New York: McGraw Bill, 197S5.

Bornig, J. J. "Process Structuring,” ACM Computing
Surveys, 5: 5-30 (March 1973),

Hsiao David K. Systems Programming = Concepts of
Operating and Data Base Systems, Reading:
Addison~-Wesley, 1975.

Intel Corporation. The 8086 Family User's Manuel,
Santa Clara: Intel Corporation, 1980.

Johnson, Jan. "Intellect on Demand," Datamation, 27:
73-78 (November 1981).

Johnson S, C. and D. M, Ritchie. "Portability of C
Programs and the UNIX System,"” Bell System Technical
Journal, 57: 2021-2048 (July-August 1978).

Kahn, Kevin c. "A Small-Scale Operating System
Foundation for Microprocessor Applications,"

Proceedings of the IEEE, 66: 209-216 (February 1978).

Kennedy, T. C. S. "The Design of Interactive
Procedures for Man-Machine Communication,"”
Interpational Journal of Man-Machine Studies, 6:
309-334 (1974).

Kindall, Gary. "CP/M: A Family of 8 and 16 bit
Operating Systems," Byte, 6: 216-232 (June 1981).

Libes, Sol. "16-Bit Microcomputer Disk Operating
Systems, " Microsystems, 50-54 (July 198l1).

Lister, A. M. Fundamentals of Operating Systems. New
York: Springer-vVerlag Inc., 1979.

Lorin, H. and H. M, Deitel. Operating Systems.
Reading, Massachusetts: Addison-Wesley Publishing

Company, 1981.

PV

VT S VR R C T v U

et

Pt L R T

IS SR

Ve e meaena —

oo At 4]

o S I e Sl < MLy VB S Lt e oo e e P e el 0 e I

30.

31.

32.

33.

34.

35,

36.

37.

38.

39,

40.

41.

42,

43.

44,

Lycklama, H. " Unix on a Microprocessor," Bell
Technical Journal, 57: 2087-2101 (July-August 1978).

Madnick, Stuart E. and John J. Donovan, QOperating
Systems, New York: McGraw-Hill, 1974,

Markowitz, R. and W, B. Pohlman. "The Evolution Path
of the 8086 M1croprocessor Architecture for Operating
System Environments," Microprocessors in Military and

Industrial Systems Workshop, 62-66. IEEE Computer
Society, February 1980.

Martin, J., Design of Man-Computer D;glgguss4 New
Jersey: Prentice-Hall, 1973,

Miller, L. A, and J. C. Thomas, "Behavioral 1Issues in
the Use of Interactive Systems," International Journal
of Man-Machine Studijes, 9: 509-536 (March 1977).

Morgan, Chris. "The New 16-bit Operating Systems, or,
The Search for BRenutzerfreundlichkeit,"” Byte, 6: 6
(June 1981). :

Muller, K. G. Specification and Design of Interactive
Systems, SHAPE Technical Center, The Hague, (June

1980).

Norman, Donald A. "The Trouble with UNIX," Datamation,
27: 139-160 (November 1981).

Organick, E. I. The Multic System: An Examination of
Its Structure, Cambridge: The MIT Press, 1972.

Overgaard, Mark. "UCsD PaScal: A Portable Software
Environment for Small Computers,” National Computer
Conference, 1980, 49: 747-754, (1980).

Plauger, P. J. and M. S. Krieger. "UNIX-like Software
Runs on Mini- and Microcomputers," Electronics, 54:
125-129 (March 24, 1981).

Rector, Russell and George Alexy. The 8086 Book,
Berkeley: McGraw-Hill, 1980.

Ritchie, D, M. and K. Thompson. "The UNIX Time-Sharing
System,” The Bell System Technical Journal, 57:
1905-1929 (July-Augqust 1978).

Ritchie, D. M. "UNIX Time-Sharing System: A
Retrospective,” Bell System Technical Journal, 57:
1947-1969 (July-August 1978).

Rosin, S. "Electric Computers: A Historical Survey,"

114

LG A e s ele

i e

vy

45.

46.

47.

48.

49,

50.

51.

52,

53.

54,

55.

56 .

57.

58.

ACM Computing Surveys, l: 7-36 (March 1969).

Rosin, T. F, "Supervisory and Moniter Systems," ACM
Computing Surveys, l: 37-54 (March 1969).

Rouse, William B. "Design of Man-Computer Interfaces
for On-Line Interactive Systems," Proceedings of the
IEEE, 63: 847-855 (June 1975).

Sackman, B. Man-~Computer Problem

"Experimentalv Evaluation of Time-Sharing and Batch
Processing”™, New York: Auerbach, 1970.

Schorer, Peter. "Structure the Use: Notes on a Method
for Designing Computing System Environments," Computer,
14: 77-86 (December 1981)

Schwabe, J.,M, J., Elmore and D. Miller. "The Impact of
16-Bit Microprocessors on Software Development,”

Corputer Design, 20: 111-115 (June 1981).

Seattle Computer Products, Inc. "CPU Support Board -
Instruction Manual, Model SCP300F," Revision F,
Seattle: Seattle Computer Products, Inc., 1980.

Shaw, Alan C. The Logical Design of Operating Systems.
New Jersey: Prentice-Hall, 1974.

Sherman, S. et, al. "Trace Driven Modeling and
Analysis of CPU Scheduling in a Multiprogramming
System,” Communications of the ACM, 12: 1063-1069
(1972) .

Tesler, Larry. "The Smalltalk Environment," Byte, 6:
90-147 (August 1981).

Thompsom, K. "UNIX Time-Sharing Systemn: UNIX
Implementation,” Bell §System Techpical Journal, 57:
1931-~1946 (July-August 1978).

Watson, Richard W. Timesharipg System Design Concepts,
New York: McGraw-Hill, 1970,

Watson, Richard William, "User Interface Design Issues
for a Large Interactive System," National Computer
Conference 1976, 45: 357-364 (June 1976).

Weinberg, Victor, Structured Analysis. New York:
Yourdon Press, 1979,

Weiner, PRruce and Douglas Swartz., "Adapting Unix to a

16-bit Microcomputer," Electronjics, 54: 120-129 (March
24, 1981).,

115

ot A | AR # AL g N vl LA A S B gt T - T SR MRt s i

59. Yourdon, Fdward and Larry R. Constantine. Structured
Design; Fundamentals of a Discipline of Computer
Program and Systems Desigp. Fnglewood Cliffs, N, J.:
Prentice Hall, Inc., 1978, :

3 60. Yusko, Robert J. Development of a

Multiprogramming
System for the Intel 8086 Microprocessor," MS Thesis,
Wright-Patterson AFB, Ohio: School of Engineering, Air

% Force Institute of Technology, December 1981.

61. 2Zaks, Rodnay. The CP/M Handbook with MP/M. Berkeley:
Sybex, Inc., 1980,

62. Zarella, John, Operatipg Systems Concepts and :
inciples., Suisun- City, California: Microcomputer !

Principl
Applications, 1979,

T

e e Bevime MY

iy
—a—

———

e R N VO B S

116

ey Ao e Namied AT At alnady S I o 01 i U A QA i

Appendix A

Raticnale for Timesharing and Multiprogramming

This appendix justifies the usage of timesnaring and
multiprogramming in modern computer systems, These two
techniques are widely used and accepted but their
advantages, disadvantages, and complexity are not as readily
understood. Yet, both concepts have protably contributed
more to the productivity and efficiency of computing than
any other single technique.

Timesharing is the use of a computer system to support

multiple users who view and interact with the system as if
it was a dedicated system. The primary objective of
timesharing is to provide fast, convenient, and economical
man-machine interaction to several users (Ref. 18: 235).
Multiprogramming is the technique of concurrent
execution of several programs by enabling the CPU to suspend
the execution of one process to execute another and return
to the suspended process at a later time. The primary
objective of multiprogramming is to maximize the.usage of
the system resources while maintaining a good response time

to the user (Ref. 20: 148).

Advantaqges of Timesharing

Timesharing 1is an interactive method of computing that

is totally different from batch computer systems. They are

not and should not be thought of as batch systems with

interactive facilities added on. To appreciate this fact

117

g

B T T e N R e

the two methods should be compared.

The use of batch facilities and timesharing facilities

can be viewed as computing in the passive and active modes

In the passive (batch) mode the user invokes

respectfully.

the support of a computer center and submits his programs to

the personnel, conforming to their requirements to receive

i service. The user has to predetermine all the jub steps

that are to be executed and has no access to the computer.

He has no active role in the data processing operations for

his own program, Turnaround time can be lengthly and the

: user has no control over it. The processing is totally

off-line and remote from the user's normal working

environment,

Powever, in the active mode (timesharing) the user has

immediate access to the data processing system via a

workstation in his normal working environment and he

determines when processing takes place. All input is I

interfaces directly

processed in his presence. The system

with the user's task., In the interactive mode a user can

adapt the algorithms and the workstation to suit the

requirements of a given problem, Therefore, in addition to

being a user of the system he can also be a producer of the

system by creating his own software products.

It has been suggested to be truely interactive, 2

(Ref .

timesharing facility should exhibit turee properties

36: 24):

(1) Integration of user and computer capabilities
by dialogue with free choice of user input and

118

e Nl Nl AT D -, MG S NS 1 BT ety A el Al Wb e . e .

J deterministic response by computer,

g (2) User has full control over processing sequence
(proceduralization).

(3) User adapts system to his actual needs by !
adaptation of work station and by adaptation
of software (actuwalization).

s
et S trm Ve p s p———~ .

The most outstanding characteristic of a timesharing
system may be that its user can adapt it permanently to
actual problem solving situations and approaches. This is
“"actualization" (Ref. 36: 5). This may serve to adapt a
F system to new user classes. The user may discover that he
can delegate more routine operations to the system, thus
freeing him for more creativity. The user may wish to

extend the system's capabilities so that it can be applied

to new problems.

It should be pointed out that historically, all

computer systems were dealt with interactively. Originally,

B
[SR g

computers were run by those who could start and stop them at i

will. It was only economics that led to the establishment

of data computer centers and their passive mode of

operation,

The User and Timesharing

Given the additional overhead and software complexity
of a timesharing system, are the benefits worth the effort?
Most interactive users agree., One study at MIT involved a

4 number of students in a business class who were required to

provide an optimal solution to a management problem using

Pt

computer simulation techniques (Ref. 47). The class was

divided into two groups. One group was to use an available

119

e n TR ! e SRS h I A g i 0 it T L MM SRR AT 4 i

batch system and the other was given use of the timesharing

facility. The computer facility provided information on the
use of resources, the faculty gave its evaluvation of the two
groups solutions, and students completed questionaires to
determine performance and user attitudes. The summary of
the major results of the experiment are:

£ (1) The timesharing group had a lower man/effort

cost, but higher computer cost. However, the ;

- total cost for both groups did not differ '

u appreciably, even though the costs were dis-

‘ tributed quite differently. '

(2) A significantly better solution was achieved by
the timesharing users.

{3) In the batch group, more than twice as many
people did not arrive at a useful solution,

(4) More students prefered the timesharing system, 1

— L3

iy

The conclusion is that timesharing can attribute to a
better problem solution and is prefered by most users when

compared to conventional batch systems, It is also

e m e L e e

interesting to note that costs, despite a different
distribution, did not differ significantly between batch and

timesharing use.

Effectiveness of Multiprogramming

The effectiveness of multiprogramming is usually
measured by the amount of concurrent activity in the system

i (Ref, 12: 302). If all processes in the active

multiprogramming mix are input/output bound, the processor

q is not effectively utilized. TIikewise, if all processes are

e 7y e e verer

compute bound, the processor is wutilized but not the
input/output devices. The utilization of a specific

resource is the fraction of time that the resource is busy.

120

i WL ARSI T 1 SRR Al SN o Bl . S5 B Al WL i3 S\

The sum of the utilizations is an indication of the
effectiveness of the multiprogramming. On most systems an
attempt is made to maintain a mix of computation and
input/output processes to balance the 1load on these
resources, This is usually not feasibile, however, because
the behavior of processes varies 'during execution.

3 The effectiveness of mutiprogramming as well as the
responsiveness of timesharing systems depends ultimately on
f the performance of the scheduler. The definition of a ;l
' scheduler is an algorithm that uniquely specifies which ‘
.I process is to receive service next by a resource (Ref. 18;

98) ., The scheduling algorithms must deal with a unknown set

" of processes whose behavior may change during execution
;i (Ref. 12: 302). A system should be designed so that
: reasonable service is quaranteed irregardless of user input.

Fach process uses a certain amount of CPU time before
becoming blocked, waiting for an input/output request to be
! completed. A heuristic often applied to ©processor
‘ scheduling is to attempt to minimize the time until an
execution interval ends and an input/output request is made.,
This can be viewed as an attempt to maintain as many
processes doing input/output as possible. Since the
input/output part of a system usually contains a number of
3 asynchronous devices, this tends to increase the
ef fectiveness of multiprogramming. If the execution
interval were known, then a scheduling discipline could be

selected for optimal performance. However, this is not

121

AT T

TR T

known because it requires knowledge of future performance of
the process. A scheduling technique such as round-robin has
the effect of giving preferential treatment to short service
requests and is particularly effective when the service-time
distribution has a variance much larger than the mean (Ref.

52: 1063).

Rrocessor vs, I/O_Device Speed

Many programming requirements require a large amount of
input/output activity. Since input/output devices are
dreadfully slow compared to CPUs, this encourages the use of
multiprogramming to overlap computer bound processes with
input/output bound processes. The case for multiprogramming
is even more attractive due to the fact that the improvement
in speed of input/output devices has not kept pace with the
improvements in CPU speed., For example, disk improvements
in transfer rate, access time, and rotational delay have
been in the order of only 1.5 to 2 while the improvement of
the internal processing speed of the CPU has been in the
order of 5 to 10 (Ref. 20: 147).

The disparity of the hardware improvement in terms of
the CPUs internal processing speed and the input/output
transfer rate, and the users demand for faster response and
direct access, strongly encour ages the use of
multiprogramming. The desired result will be: (1) reduced
CPU wait time on input/ouput operations by running another
process while the input/output process is running and (2)

increased response time by proper scheduling techniques.

122

it ittt

KR me e il R ke 4

s | IS 57 i 3 LRI, TSNS Y0051 bl e

Multiprogrammed Influence on the User

In some circumstances it is beneficial for the user to
be aware of the system characteristics of his computing
environment, The user may be able to take advantage of
techniques for saving time and space in the system if he is
aware of operating system algorithms and the cost of each
resource before he makes any tradeoffs.

The usev should be aware of whether or not the host
system is multiprogrammed. If not, it is 1likely the user
has a 1large main store to work with and space is not a
problem. 1In this case, a user may feel free to use more
space to save CPU time,. For a fixed task, main storage
availability 1is inversely proportional to the time to

accomplish the task. As more storage is available, the user

system
performance

T optimal amount
of memory

fewer processes can
reside in memory

memory Size per program

Figure A-1. Multiprogramming Performance vs. Memory Usage

123

I e e it

can use mere complex algorithms to execute the task more
efficiently.

However, on a multiprogrammed system the main storage
is divided among the users and less memory is available to
each one. JTf one user increases his storage, the system
cannot multiprogram as many processes and system performance
is degraded. Fiqure A-1 indicates typical throughput for a
multiprogrammed system with fixed main memory size. As the
amount of storage for each Jjob 1is increased, system
performance 1is also increased. There comes a point,
however, where the number of users is decreased and the
mutiprogramming is decreased resulting in decreased
performance. The optimal storage per user is at the peak of
the performance curve, but this would vary with the mix of
processes in the system (Ref. 31: 490).

In one study of costs on the tradeoff of input/output
access versus processor time, it was found that 12
milliseconds of processor time equaled one input/output
access. Or, if a user could spend less than 12 milliseconds
of processor time and save one input/output, it would be to

his advantage on this particular system (Ref., 1l: 198).

Degree of Multiprogramming

Too much multiprogramming, too many processes competing
for the processor, can have the opposite effect intended.
Generally, the less time a processor spends waiting for
input/output (more multiprogramming) the more wutilized the

CPU is. The implication is that increasing the degree of

124

il - s DA 346 LA+ PR il v e aM s -

- —_— e T e e e e

NUMBER OF JOBS

T = Unusable Time = I/O + 0
I/0 = Time Waiting on Input/Output
Q = CPU Time Spent in Queue

Figqure A-2, Degreee of Multiprogramming

multiprogramming increases performance. This does not take

into account the amount of overhead involved. The overhead

is a result of two factors (Ref. 31: 485). OQueuing

input/output request requires a fixed amount of CPU time for

each request, Second, limited input/output resources cause

the device queues to back-up and the CPU becomes idle

waiting for input/output devices to catch-up on requests. F

Figure A-2 indicates the effect too much

multiprogramming can have on CPU time (Ref. 31: 486). As

indicated, a point is reached where increased

multiprogramming has a negative effect on system

e 0) TR AT g T

performance. Even with fewer input/output requests, the

switching time between processes will eventually cause

poorer perfcrmance,

Conclusjons
Timesharing is rreferred because of its
"conveisational” ability to provide a quick respcnse to user

needs, Pecause several users can work on one system,

software can eagily be shared, The user's abiltiy to

interact directly with the system generally increases
productivity.

To provide quick response and adequate throughput,
timesharing systems depend on multiprogramming and efficient
scheduling techniques. Multiprogramming, when properly
implemented, provides greater utilization of system
resources and decreases turnaround time, Fowever, the
effectiveness of mutiprogramming depends on several factors
including the degree of multiprogramming, amount of main
memory, the memory allocation algorithms used, and

scheduling techniques,

e

T

Appendix B

Man-Machine Interface Issues

This appendix 1is a correlation of several literature
sources on user-friendliness and man-computer dialdgue.
Even though user-oriented systems are desirable, very little
information exists to support what creates a friendly
environment or makes a computer system easy to use.

Chapter Three focused on what functional requirements
should be considered when designing a computer system to
achieve user-friendliness. The material in this appendix

supports and adds to those requirements.

What the User Perceives

The majority of work to improve support for interactive
user has been done in the last decade. However, the level
has not yet been reached where user-quality can be measured.
Some researchers feel the ability to measure user-quality in
interactive systems is essential to proper system design
(Ref, 10: 270).

The research performed by Dzida, Herda, and Itzfeldt
(Ref. 10) makes an attempt at measuring user-quality by
estimating, with statistically nonoverlapping factors, how
the user perceives the system, They believe their
contribution is a step forward in actually measuring user
quality by mathematical means. Their efforts are centered
on two interests: (1) the expectations and desires of

users, and (2) using a mathematical method which gives

127

A o A3 #0557 STV . AR WM S N NUE 1§ i I I WRINBib A e

empirical evidence about nonoverlapping of quality aspects.
The study is based on the response of 600 persons to a
questionnaire which contained 100 system requirements based '
on user-quality. Factor analysis was performed using SPSS.
The initial set of 100 system requirements was reduced to 57

requirements, Seven factors <controlling 44 percent of i

variance of the data were extracted, Fach factor is .

composed of a set of requirements belonging together, with
factor 1loadings of at least 0.30 with smaller loadings |

indicating random correlations. The higher the loading the

more important is a requirement (Ref. 10: 271). The seven

factors were: |

e . i o g . s -
R R R I SRS 7 St

(1) Self-Descriptiveness

(2) User Control

X (3) Ease of Learning

B (4) Problem Adequate Usability

(5) Correspondence with User Expectations
(6) Flexibility and Task Handling

(7) Fault Tolerance

The factors are subject to some degree of subjective

interpretation, It should also be considered that the !

factors and requirements were first formulated in German and
then translated.

A partial list of the requirements under each factor
are listed in table B-I. It is interesting to note that the
more important requirements deal with the command language
aspects of the computer rather than performance
charactertics of the machine., It seems the users are more

concerned with how they converse with the computer than how

the computer functions. For this listing the requirements L

128

L l

O et Al o S amed M at T I Ol AR ¢ TN R il w0 T O, WSS S

0.70
0.68
0.67
0.60
0.52

0.60
0.59
0.59

0.63
0.61

0.57
0.52
0.69

0.63
0.56
0.50
0.76
0.71
0.65

0.53

0.52
0.49

Table R-1I

Factor 1: Self-Descriptivepness
explain system requests to the user if and when

necessary
supply explanat.ons in different detail and
different format upon user request

supply help features pertinent to any dialogue
situation

enable transparency of dialogue organization and
dialogue sequence at any time

explain each command and subcommand upon user
request

Factor 2: _User Control
admit interruptions of a task to start or resume

another task

admit process canceling without detrimental side
effects

allow abortion of particular dialogue stops or
processes

Factor 3: Ease of Learning
make user manuals superfluous

facilitate the 1learning of system use without
consulting manuals

be usable without special DP-knowledge

largely offer on-line forms for user input

Factor 4: Problem Adequate Usability

have a data management system that obviates as far
as possible the need for the user to perform
clerical or housekeeping activities

manage formatting, addressing, and memory
organization without bothering the user

determine system decisions without consulting the
user

accept free formatted command input

5:__Correspondence with User Expectations
behave similarly in similar situations

request analogous user actions to similar tacks to
be performed
of fer minimum astonishment behavior towards the user

Factor 63 _Flexibility_ in_Task Hapdling
allow user to extend the command language

of fer facilities for stacking tasks

Factor 7: Fault Tolerance
insist only on partial retyping if previous input

was erroneous
tolerate typical typing errors
give error messages with correction hints

129

s AU o AN AR S -t Ay B RIS s TR e, QRPN N i 1

with a loading factor of 0.49 or higher were selected. The

complete list is available in Ref. 10. !
i

How Specific Users View the System

The study goes on to subdivide the users into groups

based on their background experience in three areas:

& (1) Interactive System Experience 1
(2) Mode of Operation
4

;4 (3) Frequency of Use

'1 The comparisons of weighted factors for different user
: groups is illust:ated in figure B-1. It is interesting to

note how the importance of factors is perceived in different

ways by the separate user groups. Notice that only five

1 Importance |
of Factors
.& oS
¥ 30% - 4
B -
B °
| 208 - - - *
.; a [:
‘ . t
10% - :
'1
Factor
1 2 3 4 5
Experienced User e .
Inexperienced User a ,

Figure B-1, 1Importance of User Factors

130

e T WO 7 G sk Vg, NS g o s | RO s

1 2 3 4 5

:

|
i Batch User ©

? Interactive User a

| .
30% -
- a
A
[]
i o
: °
; 20% - -
' .
-
10% -
M i
oS
Factor
1l 2 3 4 5

Casual User ¢
Regular User a

E Figure B-1 continued.

e iz A AR . AR S - U DD e R SN

factors are used because the authors found two of the

factors to be questionably valid; i.e. fault tolerence and
flexibility in task handling.

The authors readily admit their work does not 1lead to
an absolute definition of user-quality. However, it is one
of the very few studies in this area based on a mathematical

analysis rather than speculation, Their transcript also

contained one of the better bibliographies available on this

subject.

Physical Characteristics of Interactive Devices

Rouse presents an interesting discussion on the
physical devices used in the interactive system (Ref. 46) .
His work includes CRT displays, input devices, instrument

scanning, and visual information processing. While the

designer of an operating system has little control over the

physical characteristics of the machine itself, the user's
perception of the system can just as easily be influenced by
the appearence of the system as how well the operating
system performs, However, his paper tends to be too
detailed in some respects, e.g. he specifies the optimal
character matrix size for CRTs, the proper height to width
ratio for claracters, and preferred blink frequency for

blinking cursors.

Miller also addresses the physical aspects of
interactive computing and includes some suggestions to
improve information transfer to the user (Ref. 34: 526).

One idea involves the partitioning of the screen into

132

a7 T et KOO -y e il e LA N RN | e, g R, B« Al e e ® - - .

separate work areas. The possibilities include:

(1) main work area - 20 lines i
(2) input preparation area - 1 to 2 lines ‘
(3) system facility indicator - 1/2 line
(4) diagnostic area - 1 line

(5) fixed response area - 1 to 4 lines :]

The main work area would be for text, system menus, or j
a transaction record., Input preparation is for generating
and editing the next input to the system. The system
;a facility indicator is to indicate the system facility being

used, such as a compiler or editor, as well as the

-1 characteristics of that facility such as compiler options.

. The diagnostics area could be used for error messages and

conditions neccessary to recover. The fixed response area

is for situations when a fixed set of responses are

applicable.
USCD Pascal uses a partitioned screen to keep the user
continuously informed about the state of the system and the

options available in that state. A prompt line is

H L
e e D

1' maintained on the terminal screen 1listing the available
options, The user selects an option by typing a single
character command from the prompt line. Designers of USCD
Pascal claim this feature allows a naive user to interact
with the system easily and experienced users can ignor the
1 prompt line unless needed (Ref. 39: 747). The use of a
’ "prompt 1line"™ in this case is a combination of (3) and (5)

above,

Interactive Dialogue

Most current literature agrees that the man-computer

133 l

ol . | s G T g S S i, S . i M byt L e vAy . o i Sa o s

dialogue basically differs in terms of two characteristics.
First, whether the dialogue is directed by the user or the
machine and second, whether the user has to determine the
input from a choice of alternatives outlined by the system
or the user 1is allowed to make a free response. The one
which is the guide takes the initiative during the course of
the exchange and also decides on a satisfactory termination
point (Ref., 34: 523).

The two distinctions are independent of one another,
therefore, four basic types of dialogues are possible. Each
has its advantages.

(1) system guides - user has forced-choice

(2) system guides - user has free-response

(3) user guides - user has forced-choice

(4) user guides - user has free-response

In (1) the speed of the dialogue is increased due to
the limited response of the user and the possiblity of error
is also decreased, This method seems best suited to very
structured dialogue or information gathering. For
unstructured information gathering (2) is best suited, 1In
(3) the user is at least somewhat knowledgeable about the
possible requests he could make of the system, This
dialoque style is often chosen for allowing a user to select
desirable system alternatives. The maximum latitude for the
user is provided the user by (4). It is most appropriate
for experienced and confident users performing complex
tasks. However, this situation also is the least structured
and with current technology allows the maximum opportunity

for errors between the user and the system. For variations

134

T B A I T T T O T et 4 i RO e S0 WL 23 3 A PN AT e ST

e e ppa

. . B
P R e e S i Rt R i LR

on these types of dialogues see Martin (Ref. 33)

Conclusion

A properly designed dialogue can enhance the
productivity of a computer system by promoting active
communication between the user and machine. The dialogue
style should be tailored to the users and the situation.

In summary, studies suggest that users of practically
all backgrounds prefer the computer operating system to
concentrate on intrinsic gqualities rather than technical
ones. The user is concerned with the programming problem at
hand, not the obstacles caused by a poor operating

environment.

135

- \
e s R © I L A~ acy RO oot PO M e L btk i
> S T c

e e <P D s 5 o mae

Appendix C
Computing System Environments

Introduction

A special interest in any operating system is the
environment created for the user. This appendex discusses
some of the issues concerned with the user environment, its
involvement in productivity, and relationship to the
operating system itself.

This appendix is related to the material in Appendex B,

Man-Machine Interface Issues, but deals with the subject on
a much higher level. Chapter Three introduced the concept
of user friendliness and relates to the subject of

functional requirements in the computer environmeat.

Creating a Graceful Computing Epviropment

It seems ironic that a computer able to display complex
information and perform difficult calculations, compared to
human capacity, has such a difficult time communicating with
that same human being. However, most computing systems are
not very good at communicating with the human user.
Communication with computer systems is often time consuming
and frustrating because the system does not understand the
user and the misunderstanding cannot be made known to the

user by the system.

As indicated in Chapter Three, the user represents an

implicit interface to an explicit machine. Timesharing

systems typically have very structured command languages

which operate contrary to human conversation. The computer
concentrates on the specific command, whereas the human
concentrates on the context of the conversation. Too often,
a system will respond only to commands phrased exactly as
required by a strict syntax for a particular computing
system, Compare this to the communication environment used
by humans., A syntax error made by one person talking ¢to
another is not totally rejected, but usually corrected
automatically by the receiver and the conversation never
breaks its pace. The receiver understands despite the
syntactical error.

A study conducted at Carnegin-Mellon University (Ref.
17: 19) 1identified seven capabilites an interactive system
should have to provide the communication needs of a human.
Flexible Parsing
Robust Communication
Identification from Description
Focus Tracking
Natural Output

Explanatory Facility
Personalization

S G, P, S, P P, S
SO UV WD)
mt? gt g Nt St s egaP

The seven capabilites are based on two assumptions.
First, humans have basic conversational needs when they
communicate with other people. Second, computers are hard
to communicate with because they do not fill those needs.
Flexible parsing refers to the ability to allow minor syntax
errors and permit the user the opportunity to correct the
error or choose alternates if the mistake presents different
possible interpretations. Robust communication is the

ability of a system to correct misapprehensions the user may

IR A N e WA BF b T ST 3 Mk e . O e Al WA it v VM o b

P Y e

Sl ahtd

G I, OB A0 M S S s o Zah A 5 7 R S T Rt TN o 2N A

have and clearly define the understanding between the user
and computer system, Without verbosity, the system must i
make clear to the wuser any assumption made during the
conversation, Identification from description is a system !
attribute of recognizing objects known internally from a
user description of the object. Focus tracking involves i
following the context of a user as the dialogue changes, .

f; The system should track the attention of the user even

across large spans that occur during command sessions and
return the focus back to the original context. Thus, a
command can be broken out of, another can be executed and 3

the user can return to the context of the first command.

Natural output means the output should be appropriate and 1
:{ contain a sufficient amount of detail. An explanation
f facility is broken down into two categories, static and i

dynamic. Static explanation relates to the capabilities of
! the system. Dynamic explanation relates to what the system |
| is doing, why, and explanation of past events,

Personalization refers to the systems ability to sense the *

peculiarities of each user. For example, constant syntax

errors should be pointed out and messages or responses

should be adjusted to the user experience.
These attributes add up to what may be considered a

"graceful" interactive language. However, this does not

imply a natural input/output language. A command laguage
interface that assumes an implicit input 1language and

provides a tabular output can be made graceful as well.

138

- BTN
T T T Y R e L e

Several means are available to communicate with the user and

e

achieve the seven capabilities mentioned above. They are }l

best used in combination and consist of:

(1) Animated Sequences
(2) Hand Drawn Sketches
’ (3) Voice Annotations

g ;! (4) Facsimile Images

"1 Animated sequences meay consist of a time-syncronized
}4 set of graphic displays such as cursor motions, highlighted
{j text, and recorded speech. Hand-drawn Displays allow the
f‘j system to control cursor position to select objects that
r.: were displayed earlier. This may involve the use of a joy

;-i stick or a mouse as used in Smalltalk (Ref. 53). Facsimile
images refers to printed material entered into the system

| through a 1low cost optical scanner. Voice annotations are
- easily possible even for the most inexpensive computer as a
| result of developments in speech synthesis circuits. While
§ome of these capabilities appear too elaborate for a normal

interactive user, the potential of multimedia communication

" may be too great to comgletely ignore as a partial solution

" to solving the problems in the computing system environment.

The UNIX Computing Environmept
UNIX was introduced in Chapter One and again in Chapter

Two as an example of a friendly computing environment,

i et .

Essentially, UNIX was written by programmers and for
programers (Ref. 43). Every object in UNIX 1looks 1like a I
file, including. all input/output channels. This makes it

possible to for input/output to be taken from any program to

139

Ve

e e e e e+ e et a——

or from any file or input/output device without special
planning by the programmer. 1In addition, UNIX provides a
hierarchical file structure to allow users to position
themselves anywhere in the data structure to work with near

by files. The system keeps track of the current directory

the user is referring to for each file command.
The "shell®™ of UNIX is the command interpreter. The ;

‘4 shell can take input froﬁ a variety of sources. Input can |
come from a file which provides an easy means of invoking a

frequently used set of commands. The commands are listed in

- the file and calling the file invokes the string of
commands. This technique can produce a specialized command

for a particular user. Each user can build a set of

commands based on programming needs. The shell also allows i
iterations of commands, conditional operations, and passing
arguments from the result of one command to the input of
another.

UNIX provides communication channels called "pipes"
X which allow the output from one program to be easily 1

directed to the input of another. Therefore, a sequence of

programming modules can be strung togeter to do some task
that would require special purpose programs in other system
environments. UNIX 1is just the operating system and does

. not provide special purpose programs, Instead, it attempts

ERRr e

to provide a set of basic software tools that can be strung
together in flexible ways using input/output redirection,

pipes, and shell programs to create a programmer's

140

it 53 o R ST KR L0 PR DAY ., e RS ¥, il <t i s T I e R L

workbench,

However, there are several problems with UNIX (Ref.
37). First, the lanquage, functions, and syntax are
inconsistent. Second, the syntax, command names, and
formats seem to have little relationship to their functions.
Third, the lack of interaction makes the state of the system
hard to determine. The operation of the system is so hidden
from the user that UNIX becomes recluse. Finally, learning
the system can be very difficult for novices. There 1is a
lack of sensible mnemonic structures,

UNIX is a powerful computing environment., However, as
the author of "The Trouble with UNIX" (Ref. 37) observed,
operating system designs should not be for the computer and

not even for the designer, but for people.

Designing Environments

Not knowing how difficult a system is to wuse until
after it is completed can be a costly experience. Usually,
redesign and system modification are the result. Schorer
(Ref. 48: 77) suggests three techniques for designing
system environments,

(1) Designing a software system is designing a
behavior field for the user. A sociology
of interaction exists between the user and
the system.

(2) The "use" of the system must be structured.
Good environment does not necessarily result
from structuring the system itself.

(3) The major issue is coordinating the "use" of
programs, not writing programs.

The basic philosophy underlying Schorer's approach is

process-oriented rather than object-oriented view of

141

software systems. The object-oriented view is characterized
by the belief that the most important idea is the hardware
or software itself, rather than its use. The use is
determined after the hardware or software is completed. The
process-oriented view is characterized by the designer who
attempts to engineer the "use®™ of the system. The system
cannot be described without describing its use.

Since the use of the’system is primary, the largest
class of intended users (LCIU) should be identified. The
designer can then use "environmental consciousness" to
continually observe and record the needs of the users and
when in the environment the users have these needs. This
reduces to what wuse is needed when. This may point to
possible subenvironments.

This design method can be summarized by three points.
First, define the minimun each user is expected to know (the
LCIU). Second, define the major functions the users will
perform in the environment., Third, evolve the environments
and subenviroments by considering the designer as a user and
test the system against members of the LCIU. Improve the
system as needed. Essentially, the designer is building

human factor research into the design itself.

Conclusiop

The user environment is of primary importance to the
operating system. Design of an operating system for a
specific group of users must first satisfy the needs of the

user environment. This environment should include a people

142

2ak o

i R eIt e R, S it T -~ i e R i A . s . - -

oriented command language and programming facilities as
demonstrated by UNIX files and pipes for maximum 1
3 productivity.
1
:
|
; 4
¥

B T

143

4

Appendix D

. Hardware Configquration

The hardware configuration is relatively fixed based on
available resources. The heart of the system, the Intel
8086 microprocessor, was mentioned in Chapter One as the
;i first powerful 16-bit microprocessor. The CPU card, SCP

200B is configured to the IEEE-696 standard S100 bus as are

all the cards being used. The CPU runs at 8 MHZ and has an
3 onboard 24 MHZ clock. The 8086 allows three clock cycles
for memory access. At 8 MHZ, 250 ns memory is required
(Ref. 21).

'i The CPU Support Card, SCP 300F, has one parallel input,
one paralled output, and one serial port. A time of day
clock and two 16-bit wide timers are on the Support Card. A
fj vectored interrupt controller provides fifteen levels of
vectored interrupts expandable to sixty-four through slave

controllers (Ref, 50: 6-22).

The Multiport Serial Card, SCP 400B, has four serijial
ports, four programmable channels, and four handshaking
lines per channel. Band rates to 19,200 can be selected for
either terminals or modems. The interrupt controller may be
slaved to the CPU Support Card for fully vectored operation
or used in the polled mode.

The system configuration is indicated in figure 3, The
original system will support four users but additional
hardware may be added to support more, The current memory

is 48K but more may be added to support an increased load of

144

i | N N “

i AR vt S Wt KM Sl i < SRS NN et T N AT Rt b A e s e

- T I
5" ! 8" |
DISKS | DISKS |
L
|
4 |
{ S _ o
] N ettt ~ 1
| ~ < | MULTIPORT | | I
i | " SERIAL DISK | _ DISK
| - | CONTROLLER CONTROLLER |
. | SCP-400B | ! |
=" ‘ |
| !
¥ 4 USERS —_— e e e)
MULTIPORT 8086 PRIMARY
- SERIAL CPU MEMORY
|
| @/ SCP-400B SCP-200
| -
‘ 4
CPU
Printer Support
i SCP-300F

Figure C-1, Hardware Configuration

processes. The number of peripheral devices are not limited

|
i
|
|
|
to those indicated by figure 3, but are currently limited to ii
|
the hardware available. :
i
i
i

QU e g S, ottt M D et e

Appendix FE

Structured Specification

This appendix contains the structured specification for
the operating system under development. Fiqures 6-42, the
data flow diagrams, are reproduced and the data dictionary

follows. The data dictionary contains the process

specfications, file definitions and data dictionaries for

each layer of the operating system.
Notation for the data dictionary:

means is composed of

means AND

means choose one of (exclusive OR)
means at least oneof (inclusive OR)
means optional

means interations of

B I e i o i e R S TS L A RS v -

Figure Page

6 Data Flow Diagram Symbols . . . « &+ o+ « » » « o o 151
{ 7 Operating System Context Diagram « « « « 152
Q 8 Operating System Shell Diagram . . « « « o o o« o 153
: 9 Execute System Command . « « ¢ ¢ ¢ o ¢ ¢ o o o & 154
10 Execute Control Command . . + « « ¢ o o o o« o o o 155
11 Execute Help Command . « « ¢ o o o o o = o« o o « 156 .

12 Execute User Command . ¢« « « o o o o o o o o o « 157

13 File Management Context Diagram , « . « « 158 |

14 File Management Overview . . « « « ¢ « ¢ « &« o« « 159
15 Execute Open File . + o 4 « ¢ ¢ o ¢ ¢ o« o o« o o « 160
16 Allocate File Space . . « « ¢ o « o o o ¢ o o o » 161
17 Execute Link Files . . . ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o« o« 162
18 Create File Descriptor. . + o ¢ ¢ ¢« ¢« ¢ o o« &« o o 163
19 Close File . « ¢ o ¢ ¢ o o o o « o o o o o o o » 164

" ro— & T~ o
—— e Rt — b

20 Input/Output Management Context Diagram 165
21 Input/Ouput Management Overview ¢« « « « . 166
22 Initiate Input/Output Request . « « « ¢« o o o o« o 167

23 Execute Device Handler . . . « o « o o« o o« « o« » 168

24 Schedule Management Context Diagram . . » » « « « 169
y 25 Schedule Management Overview . . « « « o ¢« o « » 170
26 Create ProCeSS8 . . « s o o o o o o o o o o o o o 171
27 Execute Scheduler . « ¢« o+ s « o ¢ o ¢ o o o o o« o 172

28 Determine Process Status . . ¢« o o o« o o o o o o 173

29 Determine Running Process . « « « ¢ ¢ o s o« o o o 174

TTER e o T AR TN TR

} 148

A et AL A Sy AN e

Enter Processor Queues
Swap Process . « o ¢ ¢ o o o o

Memory Management Context Diagram

Memory Management Overview., . . .

Select Free Area . . + o & o o »
Deallocate File Space . .

Nucleus Context Diagram .

Nucleus Overview Diagram
Dispatch Process . . ., .
Interprocess Communication
Lock and Unlock CPU
Save and Restore CPU State

Interrupt Handler &

Structured Specification Definitions

Data Dictionary for Operating System Shell. . .
Pile Definitions for Operating System Shell . .
Process Description for Operating System Shell.
Data Dictionary for File Management
File Definitions for File Management
Process Description for File Management . . .

Data Dictionary for Input/Output Management . .
File Definitions for Input/Output Management, .
Process Description for Input/Output Management
Data Dictionary for Schedule Management

File Definitions for Schedule Management. . . .

Process Description for Schedule Management . .

ot Ry e en T S TR vy wpron et R leadn B i PPN - TV IR UM

R il Aot

Data Dictionary for Memory Management . . . « « « « « o 238
File Definitions for Memory Management. . . « « « « o o« 241
Process Description for Memory Management ., . . « « « « 242
Data Dictionary for Nucleus .« . o« ¢« o ¢« o o ¢ « o o« o« o 244

File Definitions for NUuCleus . . « ¢ ¢ o o o ¢ o o o o 247 i

Process Description for Nucleus . . « ¢ o« ¢ ¢ o o + o o 249

|
‘ |
i

150

PR S TS0 At O TR e NI e 0 3 e

a0

i

R
*

e P i &P T SO i NI AV, AR AL 1 bl KT e -

Stk

DATA
DESTINATION 1

DATA
SOURCE

DATA BASE

. »
PR Sy,

Figure 6. Data Flow Diagram Symbols

USER co
INPUT
DEVICE

MMAND EXECUTE
OPERATING

SYSTEM

CONFIGURATION DATA

SYSTEM
SUPERVISOR

/

SYSTEM

Pigure

7.

152

Operating System

Context Diagram

D R

1

DETERMIN

SYSTEM
COMMAND

SESSION

6
EXECUTE

EXECUTE

2

7

CONTROL
COMMAND

RESPOND
TO USER

SYSTEM PARAMETERS

EXECUTE
HELP
COMMAND

USER
RESPONSE

EXECUTE
CONTROL

CONTROL
MESSAGE

4

Figure 8.

Operating

e SO e

System Shell Diagram

vy D - < s Pt T e e s g e

SYSTEM COMMAND ILLEGAL COMMAND

VERIFY
AUTHORITY

2.1
AUTHORIZED COMMAND

AUTHORIZATION
MESSAGE

CONFIGURATION DATA

MENU FILE

Figure 9. Execute System Command

i . i B et . . .
e A e s T S R o N DI il ety - o A i A W - 5

! i
3 |
| ;

1
$ 1
2 USER LIST
3 i
3
% CONTROL LOGIN PROMPT #
¥ COMMAND
K]
b 4,1 USER DESCRIPTORS

! DETERMINE
.| CONTROL
[COMMAND

7 LOG-OUT MESSAGE
|

4.4
o INQUIRY EXECUTE INQUIRY RESPONSE

\ COMMAND INQUIRY

g SYSTEM DATA
Figure 10. Execute Control Command
B

Skl " Jpaian 2+ R o X g IRV NI SO, -5 st 5 S 4 V81 - 3 s

SYSTEM
INFO REQUEST

HELP COMMAND
REQUIRED

COMMAND
INFO REQUEST

SYSTEM INFORMATION

5.2
PROVIDE
SYSTEM

SYSTEM INFO

COMMAND DOCUMENTATION

COMMAND INFO

Figure 11, Execute Help Command

LR

o

AV, RN
o,

g e

%y

3 S Sohll . e
. . N
RS O NNV A S, Sahy Y

- c—

el Al U

i Gl TR T AN LGB I B, SOOI - blcoAhe B L3 P 1 A

INTERPRETED
COMMAND

SESSION
COMMAND

6.4
EXECUTE
COMMAND

SYSTEM
RESPONSE

COMMAND
ARGUMENTS

COMMAND TABLE

COMMAND
CONDITIONS

6.2
DETERMINE
COMMAND
CONDITIONG

COMMAND
REQUIREMENTS

Figure 12. Execute User Command

157

b,

"

e ap e ¥ ke

et 44 —~

& L o
. . " .
e e L s

A

il s sl 0300 A U A IOt - I 7 - S el T B 2l UL 91 e o e e et e

FILE
FILE REQUEST FILE DATA
REQUEST MANAGE FILE
SOURCE FILE DEVICE
SYSTEM
FILE CATALOG
Figure 13, File Management Context Diagram
158

e e v AT ABRL U SRR o G 3 B SIS A S 1 M g e e L. a1 ". Ce e

@ :
3 |
{ |
k CURRENT MASTER DIRECTORY |

3 .
3 FILE COMMAND FILE i
A DESCRIPTOR !
i FILE LOCATE

REQUEST [USER FILE

, DIRECTORY

2
CLOSE REQUEST
DIRECTORY

1 LOCATION

3

i
| 1
4 DETERMINE

i MASTER
b | DIRECTORY |
"

‘ USER DECRIPTORS FILE DESCRIPTORS

Figure 14. File Management Overview

159

e e St w0 I it e s, BRI 52 s S e, B i - s < e .o - . . P — —
‘VI

_1
{)
' 1
i
|
] FILE COMMAND ‘
3 . DIRECTORY
] OPEN FILE ERROR
{ REQUEST
i
ﬂ NEW FILE
. i
FILE
_ LOCATION
| {
. USER FILE DIRECTORY
| DIRECTORY
| LINKS
K LOGICAL FILE ACCESS
2 DEVICE PARAMETERS RIGHTS
"
|
‘]
_ . 3.7 i
3 DETERMINE\ PHYSICAL CREATE LINK !
{ FILE LOCATION APPROVAL !
‘ LOCATION f
!
i ACCESS ;
y ABORT |
H FILE a
' DESCRIPTOR i
Figure 15. Execute Open File
‘1.
160
1

e S DM il K.

A e AN 5 e S - as

‘

L T Rt es TR, e

NEW ACCESS RIGHTS

3.3.4
ESTABLISH
ACCESS
RIGHTS

NEW
FILE NAME

3.3.1
DETERMINE
NUMBER

OF BLOCKS

NEW FILE

NUMBER

OF BLOCKS
BLOCK ADDRESS

3.3.3
BLOCK ID | CONNECT
FILE
BLOCKS

3.3.2
IDENTIFY
FREE
BLOCKS

STORAGE ERROR

FILE STORAGE DIRECTORY

Figure 16, Allocate File Storage

161

ol

LN

Phdiadaaas v
——— e

bz aSoliitaiges ¢ ook 4

= Nt iR

Bt AT e B GR si Ba o i N P R el Wi el W e)

USER DESCRIPTORS

3.6.1
DETERMINE

USER
DIRECTORY
v

LINK APPROVAL

REQUESTED
FILE NAME

3.6.3
LINK
USER TO
OWNER

USER
DIRECTORY
INFO

USER DIRECTORY

OWNER LINK

Fiqure 17. Execute Link Files

e BN £ e R oW e SRR 2 NS Ll 5 IR ke b WA i S

FILE PARAMETERS
LOCAL FILE BLOCK

EXISTING DEVICE DESCRIPTOR
BLOCK LOCATION

FILE BLOCK

STARTING
CENTRAL FILE BLOCK BLOCK

- Pigure 18, Create File Descriptor

bl WA b Y. il oL

ey

o VT,

I

CLOSE FILE
REQUEST

LOCAL FILE BLOCKS

LOCATION OF
CENTRAL FILE BLOCK

CURRENT STATUS

CENTRAL FILE BLOCKS

Figure 19. Close File

164

N

T e Va0 -

e, PG s ot Al MY G S S i < N A N WK s I 25 Y L5 AR e e © e ety e en e ke

INPUT
OUTPUT
DEVICE

INPUT
OouTPUT
SOURCE

MANAGE
INPUT
OUTPUT

I/0 DATA

I/0 REQUEST

Sl e

1 DEVICE QUEUE

Figure 20. Input/Output Management Context Diagram

S o< I

165

L aidt M, ataci YR e S G 55 A . M M*'J“‘W‘wWMAL#&EJJ.‘ SERORRCI RO JISEIRIPETR

DEVICE DESCRIPTOR TABLE

1/0 REQUEST

DEVICE REQUEST
MAP PARAMETER NOTICE EXECUTE
LOGICAL INITIATE DEVICE
TO PHYSICAL REQUEST HANDLER
DEVICE 2 3
1

DEVICE SERVICE LIST
PHYSICAL REQUEST
DEVICE SERVICFD
MESSAGE

CHECK 1/0
PARAMETERS, ERROR MESSAGE
4

Figure 21. Input/Output Management Overview

e e g roa e Vo3 e Y

DEVICE
PARAMETERS

2.1 BLOCK ID
ASSEMBLE
REQUEST

BLOCK

REQUEST
NOTICE

DEVICE
SERVICE
LIST

DEVICE SERVICE LIST

Figure 22, Initiate Input/Output Request

167

e

alp M > Shgica

O e SRS ATk Sl i 885 r

L L AL . 2 it el

DEVICE SERVICE LIST
BLOCK _ BLOCK ID
3.3
DELETE
REQUEST REMOVE FROM
NOTICE REQUEST LIST
3.1
BLOCK ID
BLOCK
INPUT OUTPUT
DATA DATA
3.4 DATA TRANSLATED
TRANSLAT
DATA

TRANSFER COMPLETE

3.6
NOTIFY
PROCESS

T —
PROCESS NOTIFICATION

Figure 23. Execute Device Handler

168

R ey

x - A e N it T O T SR T L T T Y T e e

LA b

v
(o
Shekidiichucr oo

PROCESS
DATA
STRUCTURE

JOB JOB DATA PROCESS

SOURCE

Figure 24. Schedule Management Context Diagram

169

H
g
]
J j]
3 NEW JOB ;
3 CREATE 3 .:
5 | PROCESS EXECUTE
. 1 MEMORY
E SWAP
Fi SWAP OUT
| REQUEST
1 PROCESS STRUCTURE
“ I/0 REQUEST
7 Figure 25, Schedule Management Overview
g
5

po S ——

170

- A~ At o W it el P O o e

- Ay PO

oY e e S S

o —
MEMORY REQUEST

MEMORY BOUNDS

ENVIRONMENT

1,2
INITIALIZE
PROCESS

o s =) TR = TR~ A <Y T e 44 S LSO~ W PO

NEW PROCESS DESCRIPTOR

Figure 26. Create Process

o e A M AN, WP e S M 4 R soroir s N, @i S

l 5
b4
)
i
t
3 SWAP REQUEST |
-3 NEW 8
¥ PROCESS
! ;
;‘ SWAP OUT |
| REQUIREMENT 1
"v |’ i
3 READY QUEUE WAIT QUEUE .
|
PROCESS 1
CONDITION !
g f
k| ;
|

Figure 27. Execute Scheduler

Vil

e

172

...

é.
{
3

o e, St e A A Wims B ARG

R R T e B

PREEMPTED
PROCESS

*EW PROCESS

BLOCKED
PROCESS

RUNNABLE
PROCESS ID

RUN PROCESS 1D

RUNNING

READY QUEUE

RUNNABLE
STATUS

PROCESS
STATUS

2.1.5
REQUEST

QUEUE
ACTION

UNRUNNABLE
PROCESS ID

PROCESS
CONDITION

CHANGE
UNRUNNABLE
STATUS

id - .

Figure 28. Determine Process Status

173

;;:3
1 b
1 |
| READY QUEUE ;
L PRIORITIES RUN PROCESS ;
]
PRIORITY i
WAIT QUEUE '

PRIORITIES

REQUEST
SWAP-OUT e
REQUIREMENT g
=3 %
3
Figure 29. Determine Running Process "
$
H
] %‘
§ !
1 ;
; i
i
E

i 174

N e skl AN R MR SRl MY Y A

QUEUE
REQUEST

PROCESS INFO

QUEUE

WAIT QUEUE READY QUEUE

WAIT
QUEUE 2.3.3
INFO DETERMINE
QUEUE
READY
QUEUE
INFO

Figure 30. Enter Processor Queues

ot L Aareetl IR M, R ends AT ol

SWAP-IN
REQUEST MEMORY REQUEST

3.1
DETERMINE MEMORY RESPONSE

MEMORY —_
AVAILABLE

SWAP APPROVAL
SWAP-OQUT
REQUIREMENT
SWAP-IN INFO

3.4 I/0
INITIATE REQUEST
\SWAP I/0

SWAP-OUT
REQUEST 3.3
EXECUTE
SWAP-0OUT
SWAP-OUT INFO

Figure 31. Swap Process

= et At R A A e ISR 1
> - .

i s o Pt + ey IR, Vg Wty o MXLITETT e L e hige, etbbanstt e L e v

SCHEDULER

PROCESS
NEEDS

MEMORY

PROCESS
DATA

MANAGE
MEMORY

MEMORY RECORD

Figure 32,

Memory Mahagement ContextDiagram

177

ey e

B T P T Y i ke

PROCESS NEEDS
5

DEALLOCATE
DEALLOCATE MEMORY
REQUEST

MEMORY MAP TABLE

PROCESS
SIZE

PROCESS
MAP

PROCESS BOUNDS
4
RECORD
PROCESS MEMORY
BOUNDS BOUNDS

Figure 33. Memory Management

e irument A TP Wil > s SR T x

it AR T s+ e e dianiTh

FREE SPACE TABLE

2.1 2.3
EXAMINE UPDATE
FREE

ACCEPTED
FREE AREA

PROCESS MAP

NO FIT MESSAGE

Figure 34. Select Free Area

A i MO i P SN L D pini V-5 -l W ST OOENNGL, NN O i 2005 i VTl 24 e ek v
4
'I-J
3
g
4

R

MEMORY MAP TABLE

5.2
UPDATE
MEMORY
TABLE

5.1
MATCH
ENTRY AND
PROCESS

AREA
PARAMETERS

PROCESS 1ID

FREE SPACE TABLE

Figure 35. Deallocation Memory Space

e Nt .
. A e — e e B

180

T ———.

TCT Dt EU e A T A Yt WYL T RS e

it onttisninibibnincmesaniitin

‘
——— et 1 e e e

edniiingh

e £, ; SRS e et SENAGBIR , MRS 7 NANL ML . S SR I 00 -c m per st o oo D R e A
5 E
PROCESS

3 ENVIRONMENT
3 INTERRUPT[INTERRUPT | INTERFACE
i SOURCE ID HARDWARE CPU
3

.} PROCESS STATE
3 1
&
E PROCESS STRUCTURES
- Figure 36. Nucleus Context Diagram

|
&

;

181

T;

AD-A115 618 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO0--EYC F/6 9/2 w
DESIGN AND DEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F—ETC(U) *

MS
UNCLASSIFIED AFIT/GCS/EE/SID-“‘

LT[

INTERRUPT ID

PROCESS STRUCTURES

3
PROCESS
COMMUN-
ICATION

PROCESS
ENVIRONMENT

PROCESS
STATES

Figure 37. Nucleus Overview Diagram

B ag e Sl A e e s Mall i W
‘x
’ PROCESS STATUS
> PROCESSOR STATES
; PROCESSOR QUEUE
|
- CPU DESCRIPTOR

PROCESS

ID

PROCESS
DESCRIPTOR

RUNNABLE PROCESS STATE

' - . (S

Figure 38. Dispatch Process

‘ ' 183

e R STV N

s M -l

3
R

PROCESS CONDITIONS

PROCESS STATUS

o

Figure 39.

Interprocess Communication

184

- ¥

P STt ———

Figure 40, Lock and Unlock CPU

3.1
SAVE CPU
STATE

PROCESSOR
REGISTERS

3.7
RESTORE
CPU STAT

PROCESSOR STACK

Figure 41,

Save and Restore CPU State

g

; |
{
: 1
; f
: i
1 $
!

INTERRUPT VECTOR TABLE

SOURCE ID

. e _ - .
—_— e b e e %o

3.3 HIGHEST INTERRUPT
DETERMINE PRIORITY ROUTINE
OCATION
CURRENT ;
PRIORIT LOCATION ' ﬂ
PROCESS
STATUS ‘

CHANGE

3.6
SERVICE

DISABLE MESSAGE

Figure 42, Interrupt Handler

U Y
Y

187

d
s

o e

R T s e T i il IR RIS R

DATA DICTIONARY

FOR OPERATING SYSTEM SHELL

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

AUTHORIZATION-~-MESSAGE

SUPERVISOR-ID

AUTHORIZATION-MESSAGE = UNIQUE INTEGER
ASSIGNED TO SYSTEM-SUPERVISOR
BY THE OPERATING SYSTEM

VERIFY AUTHORITY (2.1)

PROVIDE MENU (2.2)

EXECUTE SYSTEM COMMAND LEVEL

AUTHORIZED-COMMAND
NONE
AUTHORIZED-COMMAND = SYSTEM-COMMAND
BY A VERIFIED SYSTEM-SUPERVISOR
VERIFY AUTHORITY (2.1)
CONFIGURE SYSTEM (2.3)
EXECUTE SYSTEM COMMAND LEVEL

COMMAND
NONE
COMMAND = USER-COMMAND

| SYSTEM-COMMAND
USER
DETERMINE COMMAND TYPE (1)
OPERATING SYSTEM SHELL

COMMAND~-LOCATION
COMMAND-ADDRESS

ADDRESS OF COMMAND IN MEMORY
USED IN THE FILE: COMMAND-TABLE

COMMAND-ARGUMENTS
NONE
COMMAND-ARGUMENTS = {CHARACTERS

| PILE-NAME}
INTERPRET COMMAND STRING (6.1)
DETERMINE COMMAND CONDITIONS (6.2)
EXECUTE USER COMMAND LEVEL.
AS REQUIRED BY COMMAND ENTRY IN
COMMAND-TABLE

188

[y PR

T

PRI sl 0

et e mat mmeima e

PN

i il o R
e e e 4 o

!
:

s A O st W | S S5 %

DATAFLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

e o TN i W

COMMAND~CONDITIONS

NONE

COMMAND-CONDITIONS = {CHARACTER}
DETERMINE COMMAND CONDITIONS (6.2)
EXECUTE COMMAND (6.4)

EXECUTE USER COMMAND LEVEL

AS SPECIFIED BY COMMAND ENTRY IN
COMMAND-TABLE

COMMAND-INFO
COMMAND-INFORMATION

SEE ALIASE

PROVIDE COMMAND INFO (5.3)
RESPOND TO USER (7)
EXECUTE HELP COMMAND LEVEL

COMMAND-INFO~-REQUEST

NONE

COMMAND~-INFO-REQUEST = ? + COMMAND
DETERMINE HELP REQUIRED (5.1)
PROVIDE COMMAND INFO (5.3)

EXECUTE HELP COMMAND LEVEL

COMMAND-INFORMATION

COMMAND-INFO

TEXT CONTAINING OPERATING INSTRUCTIONS
AND CAPABILITIES FOR EACH COMMAND,
PROVIDE COMMAND IMFO (5.3)

RESPOND TO USER (7)

USED IN COMMAND-DOCUMENTATION FILE

COMMAND-~REQUIREMENTS

NONE ‘

COMMAND-REQUIREMENTS = REQUIRED-
ARGUMENTS - COMMAND-ARGUMENTS

DETERMINE COMMAND CONDITIONS (6.2)

PROMPT USER (6.3)

EXECUTE USER COMMAND LEVEL.,

REQUIRED-ARGUMENTS = MINIMUM SET OF

COMMAND-ARGUMENTS TO EXECUTE COMMAND.

189

-

R =

o Y

|

DATAFLOW NAME:
ALIASES:

. COMPOSITION:

SOURCE:
DESTINATION:
- COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

CONTROL~-COMMAND

NONE

CONTROL~-COMMAND = LOG-IN-COMMAND
| LOG-OUT-COMMAND
| INQUIRY-COMMAND

DETERMINE COMMAND (3)

EXECUTE CONTROL COMMAND (4)

OPERATING SYSTEM SHELL LEVEL

CONTROL-~MESSAGE
NONE .
CONTROL~MESSAGE = LOG-IN-PROMPT
| LOG-OUT-MESSAGE
| INQUIRY-RESPONSE
EXECUTE CONTROL COMMAND (4)
RESPOND TO USER (7)
OPERATING SYSTEM SHELL LEVEL

HEL P-COMMAND

NONE

HELP-COMMAND = SYSTEM-INFO-REQUEST
| COMMAND-INFO-REQUEST

DETERMINE COMMAND (4)

EXECUTE BELP COMMAND (5)

OPERATING SYSTEM SHELL LEVEL

HELP-INFO
NONF.
HELP-INFO = SYSTEM-INFO

| COMMAND-INFO
EXECUTE HELP COMMAND (5)
RESPOND TO USER (7)
OPERATING SYSTEM SHFLL LEVEL

INQUIRY-COMMAND

NONE

INQUIRY-COMMAND = SPECIAL CHARACTER
DETERMINE CONTROL COMMAND (4.1)
EXECUTE INQUIRY (4.4)

EXECUTE CONTROL COMMAND LEVEL

190

Cre L il gl - i Al T 4 WA e

T Ty

DATAFLOW NAME:
ALIASES:

COMPOSITION:

ki)

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE::
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:

DESTINATION:
COMMENTS :

B g AR N, WAL et L

INQUIRY-RESPONSE
NONE
INQUIRY-RESPONSE = USER-LIST

| SYSTEM-DOCUMENTATION

| PERIPHERAL-CHARACTERISTICS
EXECUTE INQUIRY (4.4)
RESPOND TO USER (7)
EXECUTE CONTROL COMMAND

INTERPRETED-COMMAND
NONE
INTERPRETED-COMMAND = COMMAND
+ COMMAND-~LOCATION
INTERPRET COMMAND STRING (6.1)
EXECUTE COMMAND (6.4)
EXECUTE USER COMMAND

LOG-IN-COMMAND
NONE
LOG-IN-COMMAND = “LOGIN"

+ USER-NAME

+ USER-ACCOUNT-NUMBER
DETERMINE CONTROL COMMAND (4.1)
LOG-OUT USER (4.3)
EXECUTE CONTROL COMMAND LEVEL

LOG-IN-PROMPT
NONE
LOG-IN~PROMPT CURRENT DATE

CURRENT TIME
VERIFICATION OF LOGIN
LOG-IN USER (4.2)

RESPGND TO USER (7)

EXECUTE CONROL COMMAND LEVEL,

MAY INCLUDE ANY SPECIAL INFORMATION
AS DETERMINED TO SYSTEM-SUPERVISOR.,

+ + 0

LOG-0UT-COMMAND

NONE

LOG-OUT-COMMAND = "LOGOUT"
DETERMINE CONTROL COMMAND (4.1)

LOG-OUT USER (4.3)
EXECUTE CONTROL COMMAND LEVEL

191

i i e A SOOI e, e | A it SN Gl QOSSR e e Ny

DATAFLOW NAME: LOG-0OUT~MESSAGE
ALIASES: NONE 1
COMPOSITION: LOG-OUT-MESSAGE = CURRENT TIME

+ USER~NAME "LOGGED OUT"

+ RUNNING PROCESSES i
SOURCE: LOG-OUT USER (4.3)
DESTINATION: RESPOND TO USER (7) 1
COMMENTS : EXECUTE CONTROL COMMAND LEVEL. ;

RUNNING PROCESSES ARE THOSE USER J
: PROGRAMS STILL IN EXECUTION AT
& LOGOUT TIME,

1 ' DATAFLOW NAME: PERIPHIAL-CHARACTERISTICS 1
A ALIASES: NONE *
| COMPOSITION: ALL INFORMATION REQUIRED TO INTERFACE

A} THE OPERATING SYSTEM TO INPUT/OUTPUT
, DEVICES (BAUD RATE, STEP RATE, PORT
NUMBER, ETC).

COMMENTS : USED IN SYSTEM-PARAMETER FILE.
DATAFLOW NAME: PROCESS-CONDITIONS
- ALIASES: NONE
i COMPOSITION: PROCESS-CONDITIONS = PROCESS-STATUS
| COMMENTS : PROCESS-STATUS 1S AN ELEMENT OF AN

ACTIVE PROCESS-DESCRIPTOR.
PROCESS-STATUS = READY | WAITING

T

| RUNNING]
DATAFLOW NAME: PROMPT
ALIASES: NONE
COMPOSITION: PROMPT = COMMAND-REQUIREMENTS + "2"
SOURCE: PROMPT USER (6.3)
DESTINATION: RESPOND TO USER (7)
COMMENTS : OPERATING SYSTEM SHELL LEVEL
DATAFLOW NAME: SESSION~-COMMAND
ALIASES: NONE
COMPOSITION: SESSION-COMMAND = ENTRY IN COMMAND-TABLE ©
SOURCE: DETERMINE COMMAND (3) ’
DESTINATION: INTERPRET COMMAND STRING (6.1)

COMMENTS ¢ OPERATING SYSTEM SHELL LEVEL

R

R AL A, - s . 1. Ao BT rn e R 0 o s A AN 0 B gt AR P s 22 SR Pl kit o8

DATAFLOW NAME:
ALJIASES:
COMPOSITION:
SOURCE:

DESTINATION:

COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

SYSTEM-COMMAND

NONE

SYSTEM-COMMAND = ENTRY FROM MENU-FILE
DETERMINE COMMAND TYPE (1)

VERIFY AUTHORITY (2.1)

OPERATING SYSTEM SHELL LEVEL

SYSTEM-DOCUMENTATION

NONE

TEXT FILE CONTAINING INFORMATION ON
SYSTEM OPERATION AND CAPABILITIES
ON BOTH HARDWARE AND SOFTWARE

USED IN CONFIGURATION-DATA, SYSTEM-
INFORMATION, AND SYSTEM-DATA FILES.

SYSTEM-INFO
NONE
SYSTEM-INFO

USER-LIST
| COMMAND-DOCUMENTATION
| PERIPHERAL-CHARACTERISTICS
| SYSTEM-DOCUMENTATION

PROVIDE SYSTEM INFO (5.2)

RESPOND TO USER (7)

EXECUTE HELP COMMAND LEVEL

SYSTEM-INFO-REQUEST
NONE
SYSTEM-INFO-REQUEST = USER + "?"
| COMMAND + "?2"
| DEVICE + "?2"
| SYSTEM + "2"
DETERMINE HELP REQUIRED (5.1)
PROVIDE YSTEM INFO (5.2)
EXECUTE HELP COMMAND LEVEL

SYSTEM-RESPONSE
NONE
SYSTEM-RESPONCE = PROMPT

| COMMAND-PROMPT
EXECUTE COMMAND (6.4)
RESPOND TO USER (7)
EXECUTE USER COMMAND LEVEL,
COMMAND-PROMPT IS A RESPONSE FROM
A SPECIFIC COMMAND'S EXECUTION.

193

DATAFLOW NAME: USER-COMMAND

ALIASES: NONE
COMPOSITION: USER-COMMAND = SESSION-COMMAND
| HELP-COMMAND
| CONTROL-COMMAND
SOURCE: DETERMINE COMMAND TYPE (1)
DESTINATION: DETERMINE COMMAND (3)
COMMENTS : OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: USER-AUTHORIZATION
ALIASES: NONE
‘ COMPOSITION: USER-AUTHORIZATION = USER-ID
3 + USER-NAME
2 + USER-ACCOUNT
] COMMENTS : MUST BE CONTAINED IN USER-LIST FILE
]
t DATAFLOW NAME: USER-RESPONSE
» ALIASES: NONE
b COMPOSITION: USER-RESPONSE = HELP-INFO

| SYSTEM-RESPONSE
' | CONRTOL-MESSAGE
SOURCE : RESPOND TO USER (7)
DESTINATION: USER

COMMENTS : OPERATING SYSTEM SHELL LEVEL

e

o vy,

——

FILE DEFINITIONS
OPERATING SYSTEM SHELL

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

COMMAND-DOCUMENTATION

NONE

COMMAND-DOCUMENTATION =
{COMMAND
+ COMMAND-INFORMATION}

COMMAND-TABLE
NONE
COMMAND-TABLE { COMMAND

{ ARGUMENTS}
(COMMANDS-CONDITIONS)
COMMAND~LOCATION}
SEQUENTIAL BY COMMAND

EXECUTE USER COMMAND LEVEL

+ 4+ 4+ 0

CONFIGURATION~DATA
NONE
CONFIGURATION~DATA = USER-LIST

+ USER-AUTHIZATION

+ COMMAND-TABLE

+ COMMAND-DOCUMENTATION

+ PERIPHERAL-CHARACTERISTICS
+ SYSTEM-DOCUMENTATION
TABULAR BY CATAGORY
OPERATING SYSTEM SHELL LEVEL

MENU-FILE

NONE

MENU-FILE = CATAGORIES OF
CONFIGURATION-DATA

BY CATAGORY

EXECUTE SYSTEM COMMAND LEVEL

195

FILE OR DATABASE NAME:
ALIASES:

- COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

" FILE OR DATABASE NAME:

ALIASES:
COMPOSITION:
ORGANIZATION:
COMMENTS ¢

SYSTEM-INFORMATION

NONE

SYSTEM~INFORMATION = USER-LIST
+ COMMAND-DOCUMENTATION
+ PERIPHERAL-CHARACTERISTICS
+ SYSTEM-DOCUMENTATION

BY CATAGORY

EXECUTE HELP-COMMAND LEVEL

SYSTEM~-DATA
NONE
SYSTEM-DATA = USER-LIST
+ SYSTEM-DOCUMENTATION
+ PERIPHERAL-CHARACTERISTICS
BY CATAGORY
EXECUTE CONTROL-COMMAND LEVEL

SYSTEM-PARAMETERS
NONE
SYSTEM-PARAMETERS = MENU-FILE

+ CONFIGURATION-DATA
BY CATAGORY
OPERATING SYSTEM SHELL LEVEL

USER-DESCRIPTOR

NONE
USER~-DESCRIPTOR = USER-ID
+ USER-NAME
+ USER-FILE~-DIRECTORY
+ ACCOUNT-NUMBER
RECORD

EXECUTE CONTROL COMMAND

USER-LIST

NONE

USER~-LIST = {USER-NAME}
SEQENTIAL

SYSTEM-DATA, SYSTEM-INFORMATION,
AND CONFIGURATION-DATA

196 ‘

et it " o~

(kg

A e T

N e e L WY e e v B

PROCESS DESCRIPTION
OPERATING SYSTEM SHELL

PROCESS NAME: DETERMINE COMMAND TYPE

PROCESS NUMBER: 1

PROCESS DESCRIPTION:

If COMMAND is a SYSTEM-COMMAND and USER is SYSTEM~-SUPERVISOR
then COMMAND is a SYSTEM-COMMAND

If COMMAND is a SYSTEM-COMMAND and USER is not SYSTEM-
SUPERVISOR
then re~-prompt USER for COMMAND

else COMMAND is USER-COMMAND

PROCESS NAME: VERIFY AUTHORITY
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
Compare USER-ID with SUPERVISOR-ID.
If USER-ID not SUPERVISOR-ID
then reject COMMAND,
else PROVIDE MENU,

PROCESS NAME: PROVIDE MENU
PROCESS NUMBER: 2.2

PROCESS DESCRIPTION:

Read MENU-FILE and send MENU to USER

PROCESS NAME: CONFIGURE SYSTEM

PROCESS NUMBER: 2.3

PROCESS DESCRIPTION:

Manipulate CONFIGURATION-DATA as requested by the COMMAND.,
Change USER-LIST, system resoures or peripheral data.

PROCESS NAME: DETERMINE COMMAND
PROCESS NUMBER: 3
PROCESS DESCRIPTION:
Case USER-COMMAND of:
LOG-IN or LOG-OUT or INQUIRY
then USER-COMMAND = CONTROL-COMMAND
HELP or ?
then USER-COMMAND = HELP-COMMAND
else USER-COMMAND = SESSION-COMMAND

197

L emfia s B . s el

e A W«Mnﬁ‘&)mm Ser A L e SN RN Ak 1 S RS Y.

PROCESS NAME: DETERMINE CONTROL COMMAND
PROCESS NUMBER: 4.1
PROCESS DESCRIPTION:
Case CONTROL-COMMAND of:
LOG~IN-COMMAND
then log USER into system
LOG-OUT-COMMAND
then log USER out of system
4 INQUIRY-COMMAND
E then provide SYSTEM-DATA

PROCESS NAME: LOG-IN USER
PROCESS NUMBER: 4,2
PROCESS DESCRIPTION:
1f USER-AUTHORIZATION not in LOG-IN-COMMAND
4 then prompt USER for USER~AUTHORIZATION
-1 Examine the USER-LIST for USER-AUTHORIZATION
!

!

-
P Py - .

If USER-AUTHORIZATION is valid and no USER-DESCRIPTOR exists
then establish a cooresponding USER-DESCRIPTOR

If USER-AUTHORIZATION is valid and USER-DESCRIPTOR exists
then provide LOG-IN-PROMPT containing PROCESS-CONDITIONS

- PROCESS NAME: LOG-0OUT USER

PROCESS NUMBER: 4.3

PROCESS DESCRIPTION:

If USER-ID in contained in USER-DESCRIPTORS
then check PROCESS-CONDITIONS

If PROCESS-CONDITIONS are terminated
then remove USER-DESCRIPTOR

. o *

PROCESS NAME: EXECUTE INQUIRY
PROCESS NUMBER: 4.4

PROCESS DESCRIPTION:

Provide SYSTEM-DATA via INQUIRY-RESPONSE

PROCESS NAME: DETERMINE HELP REQUIRED
PROCESS NUMBER: 5.1
PROCESS DESCRIPTION:
If HELP-COMMAND contains SESSION-COMMAND
then PROVIDE COMMAND-INFO
else provide SYSTEM-INFO

' 198 ¢

PROCESS NAME: PROVIDE SYSTEM INFO

PROCESS NUMBER: 5.2

PROCESS DESCRIPTION:

Provide SYSTEM-MENU via SYSTEM-INFO

Read selection from SYSTEM-MENU

Read SYSTEM~-INFORMATION and respond via SYSTEM-INFO

PROCESS NAME: PROVIDE COMMAND INFO

PROCESS NUMBER: 5.3

PROCESS DESCRIPTION:

Output COMMAND-DOCUMENTATION for associated COMMAND

PROCESS NAME: INTERPRET COMMAND STRING

PROCESS NUMBER: 6.1

PROCESS DESCRIPTION:

If SESSION-COMMAND is contained in COMMAND-TABLE
then route INTERPRETED~COMMAND to EXECUTE COMMAND
route all other data to DETERMINE COMMAND CONDITIONS

PROCESS NAME: DETERMINE COMMAND CONDITIONS
PROCESS NUMBER: 6.2
PROCESS DESCRIPTION:
If COMMAND-TABLE requires more COMMAND-ARGUMENTS
then PROMPT USER
If COMMAND-CONDITIONS are in COMMAND-ARGUMENTS
then route COMMAND-CONDITIONS to EXECUTE COMMAND

PROCESS NAME: PROMPT USER

PROCESS NUMBER: 6.3

PROCESS DESCRIPTION:

Send COMMAND-REQUIREMENTS to USER via PROMPT

R R T

»

O AR B It i, a4 e

i

PROCESS NAME: EXECUTE COMMAND

PROCESS NUMBER: 6.4
PROCESS DESCRIPTION:
Create a process to run the INTERPRETED-COMMAND

given the COMMAND-~CONDITIONS as arguments,
Inform the user of progress via SYSTEM-RESPONSE.

PROCESS NAME: RESPOND TO USER
PROCESS NUMBER: 7
PROCESS DESCRIPTION:
Send: HELP-INFO or
CONTROL-MESSAGE or
SYSTEM~RESPONSE
responce to proper USER-ID

200

NI ;. > S

S il ‘

DATA DICTIONARY

FOR FILE MANAGEMENT LEVEL

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:
SOURCE s
DESTINATION:
COMMENTS ¢

DATAFLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

ACCESS~ABORT

NONE

MESSAGE INDICATING VIOLATION OF FILE
ACCESS PRIVILEGES

CHECK ACCESS RIGHTS (3.5)

SOURCE OF FILE-REQUEST

EXECUTE OPEN FILE LEVEL

ACCESS~-RIGHTS
NONE
ACCESS-RIGHTS = PARTNER-LIST

+ PROTECTION-KEY
EXTRACT DIRECTORY DATA (3.4)
CHECK ACCESS RIGHTS (3.,5)
EXECUTE OPEN FILE LEVEL

BLOCK-ADDRESS
NONE

BLOCK-ADDRESS FILE SIZE

FIRST BLOCK-ID
LAST BLOCK-ID OF A
NEW-FILE

CONNECT FILE BLOCKS (3.3.3)
USER-FILE-DIRECTORY

ALLOCATE FILE STORAGE LEVEL

+ 4+ i

BLOCK~ID

NONE ,
BLOCK-ID = INTEGER UNIQUE TO FILE-BLOCK

IDENTIFY FREE BLOCKS (3.3.2)
CONNECT FILE BLOCKS (3.3.3)
ALLOCATE FILE STORAGE LEVEL

CENTRAL~FILE-BLOCK

NONE

SEE FILE DEFINITIONS

CREATE CENTRAL-FILE~BLOCK (3.8.3)
DEVICE-DESCRIPTOR

CREATE FILE DESCRIPTOR LEVEL

201

— YT T e

DATAFLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:
SOURCE
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

CLOSE-FILE-REQUEST

NONE

CLOSE-FILE-REQUEST = FILE-NAME
LOCATE USER FILE DIRECTORY (2)
DELETE LOCAL FILE BLOCK (4.1)
CLOSE FILE LEVEL

CURRENT-STATUS

NONE

CURRENT-STATUS = USE-COUNT
UPDATE STATUS (4.2)

DELETE CENTRAL-FILE-BLOCK (4.3)
CLOSE FILE LEVEL

DEVICE-DESCRIPTOR-ADDRESS
NONE
DEVICE-DESCRIPTOR-ADDRESS =

POINTER TO A DEVICE~DESCRIPTOR
CREATE LOCAL-FILE-BLOCK (3.8.1)
CREATE CENTRAL-FILE-BLOCK (3.8.3)
CREATE FILE DESCRIPTOR LEVEL

DIRECTORY-ERROR

NONE

MESSAGE INDICATION FILE-NAME IS NOT
LOCATED IN THE USER-DIRECTORY
LOCATE USER DIRECTORY (3.2)

SOURCE OF FILE REQUEST

EXECUTE OPEN FILE LEVEL

DIRECTORY-LINKS
NONE

POINTER TO FILE-NAME FROM USER-DIRECTORY

AND USER-DIRECTORY TO FILE-NAME
EXECUTE LINK FILES (3.6)
USER-FILE-DIRECTORY

EXECUTE OPEN FILE LEVEL

DIRECTORY-LOCATION

NONE

ADDRESS OF MASTER-FILE-DIRECTORY
DETERMINE MASTER DIRECTORY (1)
LOCATE USER FILE DIRECTORY (2)
FILE MANAGEMENT OVERVIEW LEVEL

202

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

UATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSITION:
SOURCE
DESTINATION:

COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

EXISTING-BLOCK-LOCATION
NONE '
EXISTING-BLOCK-LOCATION = ADDRESS
OF ASSOCIATED CENTRAL-FILE-BLOCK
TEST CENTRAL-FILE-BLOCK (3.8.2)
CREATE LOCAL-FILE~-BLOCK (3.8.1)
CREATE FILE DESCRIPTOR LEVEL

FILE-COMMAND

NONE

FILE-COMMAND USER-ID
OWNER-1ID
{FILE-NAME}
OPERATION
USER-FILE-DIRECTORY-
LOCATION

LOCATE USER FILE DIRECTORY (2)

EXECUTE OPEN FILE (3)

FILE MANAGEMENT LEVEL AND

EXECUTE OPEN FILE LEVEL

USER-ID AND OWNER-ID MAY BE THE SAME

FILE-DATA

NONE

ANY BIT PATTERN PASSED TO A FILE DEVICE
INPUT/OUTPUT DEVICE

FILE DEVICE

DEVICE

CONTEXT LEVEL

FILE-DESCRIPTOR
NONE
FILE-DESCRIPTOR = LOCAL-FILE-BLOCK

~ + CENTRAL-FILE-BLOCK
EXECUTE OPEN FILE (3)
DEVICE DESCRIPTOR
FILE-MANAGEMENT-LEVEL

FILE-LOCATION
NONE
FILE-LOCATION = FILE-NAME
+ USER-FILE-DIRECTORY~
LOCATION
LOCATE DIRECTORY ENTRY (3.2)
EXTRACT DIRECTORY DATA (3.4)
EXECUTE OPEN FILE LEVEL

203

r e A FT L Tem AR i, N

éi
L
:]
| DATA ELEMENT NAME: FILE-NAME §
3 ALIASES: NONE ;
y COMPOSITION: FILE-NAME = {CHARACTERS} s
! SOURCE : DETERMINE FILE LOCATION (3.7)
: DESTINATION: CREATE CENTRAL-FILE-BLOCK (3.8.3)
i COMMENTS : CREATE FILE DESCRIPTOR :
i
L H
; DATAFLOW NAME: FILE-PARAMETERS !
1 ALIASES: NONE g
: COMPOSITION: FILE-PARAMETERS = FILE~NAME ?
H + STARTING-BLOCK !
; + OPERATION g
b SOURCE: EXTRACT DIRECTORY DATA (3.4) ?
I DESTINATION: CREATE FILE DESCRIPTORS (3.8) a
' COMMENTS : EXECUTE OPEN FILE LEVEL ;
; ;
L‘ H
i DATAFLOW NAME: FILE-REQUEST :
‘ ALIASES: NONE !
' COMPOSITION: FILE-REQUEST = USER-ID g
1 + OWNER-1ID
. + {FILE-NAME}
+ OPERATION
SOURCE : USER COMMAND OR SYSTEM PROCESS
DESTINATION: LOCATE USER FILE DIRECTORY (2)
COMMENTS : USER-ID MAY BE SAME AS OWNER-ID
DATAFLOW NAME: LINK-APPROVAL
ALIASES: NONE
COMPOSITION: LINK-APPROVAL = PROTECTION-KEY
+ PARTNER
SOURCE: CHECK ACCESS RIGHTS (3.5)
DESTINATION: EXECUTE LINK FILES (3.6)
COMMENTS : EXECUTE OPEN FILE LEVEL

EXECUTE LINK FILES LEVEL

DATAFLOW NAME: LOCAL-FILE-BLOCK

ALIASES: NONE
; COMPOSITION: SEE LOCAL-FILE-BLOCK IN FILE OR DATA
. BASE DICTIONARY
' SOURCE : CREATE LOCAL~-FILE-BLOCK (3.8.1)

DESTINATION: LOCAL-FILE-BLOCK CHAIN

COMMENTS ; CREATE FILE DESCRIPTOR LEVEL

204

T

s

R S AN e e R .

ey e

DATA ELEMENT
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

NAME:

NAME:

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS:

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE
DESTINATION:
COMMENTS :

LOCATION~-OF-CENTRAL-FILE~-BLOCK

NONE

LOCATION-OF-CENTRAL~FILE-BLOCK =
POINTER MAINTAINED BY LOCAL-FILE-BLOCK
DELETE LOCAL-FILE-BLOCK (4.1)

UPDATE STATUS (4.2)

CLOSE FILE LEVEL

LOGICAL~DEVICE

NONE

DISK OR DISK DRIVE DESIGNATION
EXTRACT DIRECTORY DATA (3.4)
DETERMINE FILE LOCATION (3.7)
EXECUTE OPEN FILE LEVEL

MODE
OPERATION
SEE ALIASE
SEE ALIASE
SEE ALIASE
SEE ALIASE

NEW-ACCESS-RIGHTS
NONE
NEW-ACCESS-RIGHTS = FILE-NAME
+ ACCESS-PRIVILEGES
ESTABLISH ACCESS RIGHTS (3.3.4)
USER~FILE-DIRECTORY
EXECUTE OPEN FILE LEVEL
ALLOCATE FILE STORAGE LEVEL

NEW-FILE

NONE

NEV-FILE = FILE-NAME + USER-ID
+ (FILE-SIZE)

LOCATE DIRECTORY ENTRY (3.2)

ALLOCATE FILE STORAGE (3.3)

EXECUTE OPEN FILE LEVEL

§

N NG N it SR N O g e Ty

Yy

DATAFLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSITION:

COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS ¢

NAME:

T W g X 3 B N o om0 e TR e . v g arebas s B kit v e e e i o L

NEW-FILE-NAME

FILE-NAME

NEW-FILE-NAME = FILE-NAME
DETERMINE NUMBER OF BLOCKS (3.3,1)
ESTABLISH ACCESS RIGHTS (3.3.4)
EXECUTE OPEN FILE LEVEL

ALLOCATE FILE STORAGE LEVEL

NUMBER-OF-BLOCKS

NONE~

INTEGER

DETERMINE NUMBER OF BLOCKS (3.3.1)
IDENTIFY FREE BLOCKS (3.3.2)
ALLOCATE FILE STORAGE LEVEL

OPEN-FILE-REQUEST
NONE
OPEN-FILE-REQUEST = FILE-NAME

+ USER-ID

+ OWNER-ID

+ [WRITE, READ,
DELETE, ADD]
USER-FILE-
DIRECTORY~LOCATION

+

DETERMINE COMMAND (3.1)
LOCATE DIRECTORY ENTRY (3.2)
EXECUTE OPEN FILE LEVEL

OPERATION

NONE

OPERATION = [WRITE, READ, ADD,
DELETE]

OPERATION IS AN ARGUMENT TO A FILE-

COMMAND OR FILE-REQUEST.

CREATE IS A SPECIAL CAS% OF WRITE

OWNER-LINK

NONE

POINTER TO A FILE IN A USER-FILE-
DIRECTORY

LINK OWNER TO USER (3.6.2)
USER-FILE-DIRECTORY

EXECUTE LINK FILES LEVEL

206

P -’ = ~ v - % i, L. e v . el gy N
Fitts Gl 1 acniing ™y BRI AN 20015 L O it 16181 1101 RS TRl 210, 7 A 4 M A BTG Nl ST 2o WAL S vy it s B ciai

DATAFLOW NAME: PARTNER

3 ALIASES: NONE
1 -~ COMPOSITION: PARTNER = USER-NAME
COMMENTS : USED IN USER-FILE-DIRECTORY AND PARTNER-

LIST TO INDICATE ACCESS PRIVILEGES. i

DATAFLOW NAME: PARTNER-LIST
4 ALIASES: NONE
i COMPOSITION: PARTNER-LIST = {PARTNER
| + PROTECTION-KEY}
2 | {PARTNER}
+ PROTECTION-KEY
COMMENTS : CONTAINED IN THE USER-FILE-DIRECTORY

FOR EACH FILE,

| DATAFLOW NAME: PHYSICAL~LOCATION
= ALIASES: NONE
COMPOSITION: PHYSICAL~LOCATION = DEVICE-DESCRIPTOR
+ FILE BLOCK LOCATION
1 SOURCE : DETERMINE FILE LOCATION (3.7)
{ DESTINATION: CREATE FILE DESCRIPTOR (3.8)
| COMMENTS : EXECUTE OPEN FILE LEVEL

i DATA ELEMENT NAME: PROTECTION~KEY
’ ALIASES: NONE
COMPOSITION: PROTECTION KEY = [N,E,R,A,P,D]
COMMENTS : NO ACCESS
EXECUTE t
READ g
APPEND
PROTECTION ALTERATION
DELETE
N IS ASSIGNED AS A PROTECTION KEY BY DEFAULT. OTHERS MUST
BE EXPLICITLY REQUESTED, PROTECTION KEYS ARE APPLIED TO
THE PARTNER-LIST, NOT THE FILE OWNER. .

Oorom=2
ftunan

e e D et 90 e

M DATAFLOW NAME: REQUESTED~FILE-NAME
ALIASES: FILE-NAME
COMPOSITION: SEE ALIASE
SOURCE : DETERMINE USER DIRECTORY (3.6.1)
DESTINATION: LINK USER TO OWNER (3.,6.3)
COMMENTS : EXECUTE LINK FILES LEVEL
207

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:.

SOURCE :
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
COMMENTS :

DATAFLOW NAME:

ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

COMMENTS :

STARTING-BLOCK

NONE

STARTING~BLOCK = FIRST-FILE-BLOCK
+ DEVICE~-NAME

DETERMINE FILE LOCATION (3.7)

CREATE FILE DESCRIPTOR (3.8)

CREATE FILE DESCRIPTOR LEVEL

STATUS
NONE
STATUS = WRITE-BIT

+ USE-COUNT
CENTRAL-FILE-BLOCK
TEST CENTRAL-FILE-BLOCK (3,8.2)
CREATE FILE DESCRIPTOR LEVEL

STORAGE-ERROR

NONE

MESSAGE INDICATING INSUFFICIENT STORAGE
AVAIALBE FOR FILE-NAME,

IDENTIFY FREE BLOCKS (3.3.2)

SOURCE OF FILE-REQUEST

ALLOCATE FILE STORAGE LEVEL

USE-COUNT

NONE

INTEGER

USED IN CENTRAL-FILE-DESCRIPTOR

USER-DIRECTORY-INFO
NONE
USER-DIRECTORY-INFO = USER-DIRECTORY
LOCATION

+ FILE-NAME
DETERMINE USER DIRECTORY (3.6.1)
LINK OWNER TO USER (3.6.2)
EXECUTE LINK FILES LEVEL

USER-FILE-DIRECTORY-LOCATION
NONE

LOGICAL POINTER TO A USER-FILE-
DIRECTORY

NONE

DATA ELEMENT NAME:
ALIASES:

COMPOSITION:
COMMENTS :

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:
COMMENTS :

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:
COMMENTS :

USER-ID
NONE

INTEGER UNIQUE TO EACH USER.
ASSIGNED AND KNOWN ONLY BY THE SYSTEM
ASSOCIATED WITH USER~-NAME.

USER-NAME

NONE

CHARACTER STRING UNIQUE TO EACH USER.
USED BY USER FOR SYSTEM IDENTIFICATION.
SYSTEM ASSOCIATES USER-NAME WITH USER-ID.

WRITE-BIT

NONE

INTEGER

USED IN CENTRAL-FILE-DESCRIPTOR

it e

s ki L 5 o e HOM 1 Lo MM s Mot rs ot = L A o kA NS VRS Sy S VT s AN T o by, it ik by n s

FILE DEFINITIONS
FILE MANAGEMENT LEVEL

‘FILE OR DATABASE NAME: CENTRAL-FILE-BLOCK

ALIASES: NONE

COMPOSITION: CENTRAL-FILE-BLOCK =
FILE-NAME
+ FIRST-BLOCK-ADDRESS
+ USE-COUNT

+ WRITE-BIT

+ NEXT-CENTRAL-FILE-BLOCK

+ DEVICE-DESCRIPTOR-ADDRESS
ORGANIZATION: RECORD
COMMENTS : CREATE~FILE-DESCRIPTOR LEVEL

FILE OR DATABASE NAME: CURRENT-MASTER-DIRECTORY

ALIASES: NONE

COMPOSITION: CURRENT-MASTER-DIRECTORY=
MASTER-FILE-DIRECTORY
| USER-FILE-DIRECTORY

ORGANIZATION: SEE MASTER-FILE~DIRECTORY { USER-
FILE~-DIRECTORY
COMMENTS : FILFE MANAGEMENT OVERVIEW

FILE OR DATABASE NAME: FILE~CATALOGUE

ALIASES: NONE
COMPOSITION: FILE~CATALOGUE =
ORGANIZATION: MASTER-FILE-DIRECTORY
+ {USER-FILE-DIRECTORY}
COMMENTS : FILE MANAGEMENT CONTEXT DIAGRAM

FILE OR DATABASE NAME: FILE-DESCRIPTORS
ALIASES: NONE
COMPOSITION: FILE-DESCRIPTOR =
: LOCAL-FILE-BLOCK
+ CENTRAL-FILE-BLOCK
ORGANIZATION: RECORD ATTACH TO DEVICE-DESCRIPTORS
COMMENTS : FILE MANAGEMENT OVERVIEW

a amans e IR e e

il Al M 07 VLR o Tt e ¥ Iy 5 O SRS SR, U M larc AR08 4 P o

FILE OR DATABASE NAME:
ALIASES:

COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE~STORAGE-DIRECTORY
NONE
FILE~STORAGE-DIRECTORY =
{FILE-NAME
+ USER-ID
+ FIRST-BLOCK
+ {FILE-BLOCK
+ NEXT-BLOCK}
+ LAST-BLOCK}
SEQUENTIAL BY FILE-NAME AND USER-ID
ALLOCATE FILE STORAGE LEVEL

LOCAL-FILE~BLOCK
NONE
LOCAL-FILE~BLOCK =
ACCESS-MODE
+ NEXT-BLOCK-LOCATION
+ CENTRAL-FILE-BLOCK-LOCATION
RECORD
CREATE-FILE-DESCRIPTOR LEVEL

MASTER-FILE-DIRECTORY
NONE
MASTER-FILE-DIRECTORY =
{USER-ID
+ USER-FILE-DIRECTORY-LOCATION}
SEQUENTIAL BY USER-NAME

USER-DESCRIPTOR

NONE
USER-DESCRIPTOR = USER-ID
+ USER-NAME
+ CURRENT-DIRECTORY
+ ACCOUNT-NUMBER
RECORD

FILE MANAGEMENT OVERVIEW

211

; FILE OR DATABASE NAME: USER-FILE-DIRECTORY k
% : ALIASES: NONE

¥ COMPOSITION: USER-FILE-DIRECTORY =
{FILE-NAME
FILE-LOCATION
FILE-TYPE
PARTNER-LIST
PROTECTION-KEY
FILE-LENGTH
LINKS-TO-OTHER-FILES
LAST-UPDATE}
ORGANIZATION: SEQUENTIAL BY FILE-NAME

‘V,,‘..
+4+ 4+ ++++

ald

R

Y

-t A P i

e e

212

_
|

e . RO S A MO A Tt B W NN A B Tl RN A e

PROCESS DESCRIPTION
FOR FILE MANAGEMENT LEVEL

PROCESS NAME: DETERMINE MASTER DIRECTORY

PROCESS NUMBER: 1

PROCESS DESCRIPTION:

If the USER's CURRENT-DIRECTORY is MASTER-DIRECTORY
then determine location of USER's-FILE-DIRECTORY

PROCESS NAME: LOCATE USER FILE DIRECTORY

PROCESS NUMBER: 2

PROCESS DESCRIPTION:

If USER's-CURRENT-DIRECTORY is not the MASTER-DIRECTORY
then determine USER-FILE-DIRECTORY from CURRENT-
DIRECTORY entry in USER-DESCRIPTOR,

determine OWNER of USER-FILE-DIRECTORY

PROCESS NAME: DETERMINE COMMAND
PROCESS NUMBER: 3.1
PROCESS DESCRIPTION:
If ADD-COMMAND
then open only the FILE-DIRECTORIES
and EXECUTE-LINK~FILES (3.6)
else open FILE-NAME

PROCESS NAME: LOCATE DIRECTORY ENTRY
PROCESS NUMBER: 3.2
PROCESS DESCRIPTION:
SEARCH USER-FILE-DIRECTORY FOR LOCATION OF FILE-NAME,
If OPERATION is WRITE or CREATE

then pass NEW-FILE to ALLOCATE FILE SPACE (3.3).
I1f FILE-NAME is not in DIRECTORY '

thne indicate DIRECTORY-ERROR

PROCESS NAME: EXTRACT DIRECTORY DATA

PROCESS NUMBER: 3.4

PROCESS DESCRIPTION:

From the FILE-LOCATION, Read: FILE-NAME
ACCESS-PRIVILEGES
PARTNER~-LIST
LOGICAL LOCATION OF FILE
ADDRESS OF DEVICE DESCRIPTOR

213

i TR 1A Dbl e s s R Sl A Y i A i

PROCESS NAME: CHECK ACCESS RIGHTS
PROCESS NUMBER: 3.5

PROCESS DESCRIPTION:

Compare the USER-ID against the PARTNER-LIST,
Compare the OPERATION against the ACCESS-PRIVILEGES

PROCESS NAME: DETERMINE FILE LOCATION

PROCESS NUMBER: 3.7
PROCESS DESCRIPTION:
Compute the PHYSICAL-LOCATION from the LOGICAL-LOCATION

PROCESS NAME: DETERMINE NUMBER OF BLOCKS
PROCESS NUMBER: 3.3.1

PROCESS DESCRIPTION:

Calculate the NUMBER-OF-FILE-~BLOCKS needed from FILE-SIZE,
NUMBER-OF-BLOCKS = (FILE-SIZE / BLOCK SIZE) rounded up.

PROCESS NAME: IDENTIFY FREE BLOCKS
PROCESS NUMBER: 3.3.2

PROCESS DESCRIPTION:

Examine the FILE-STORAGE-DIRECTORY for enough free BLOCKS
to store NEW-FILE,

If NUMBER-OF-BLOCKS are not available

then return a STORAGE-ERROR to source of NEW-FILE

PROCESS NAME: CONNECT FREE BLOCKS
PROCESS NUMBER: 3.3.3

PROCESS DESCRIPTION:

Link the identified FREE-BLOCKS together.
Remove the identified BLOCKS from the FREE LIST.

Record the STARTING- and ENDING-BLOCK-ADDRESS of NEW-FILE,

PROCESS NAME: DETERMINE USER DIRECTORY

PROCESS NUMBER: 3.6.1

PROCESS DESCRIPTION:

Examine the USER-DESCRIPTOR to determine the location of
the USER-DIRECTORY,

v e sl P i, 2 L U MR < SV % i (S R M R Nt e < 2. s ke Ly e e - . Y

PROCESS NAME: LINK OWNER TO USER

PROCESS NUMBER: 3.6.2

PROCESS DESCRIPTION:

Establish a pointer from the OWNER's-FILE TO THE USER's-
FILE-DIRECTORY in the OWNER's-DIRECTORY,

PROCESS NAME: LINK USER TO OWNER

PROCESS NUMBER: 3.6.3
PROCESS DESCRIPTION:
Establish a pointer from the USER's-DIRECTORY to the OWNER's~

FILE in the USER's-DIRECTORY,

PROCESS NAME: CREATE LOCAL-FILE-BLOCK

PROCESS NUMBER: 3.8.1

PROCESS DESCRIPTION:

Record: CENTRAL-FILE-BLOCK-LOCATION
OPERATION.

Executed each time a process opens a file.

PROCESS NAME: TEST CENTRAL-FILE-BLOCK
PROCESS NUMBER: 3.8.2
PROCESS DESCRIPTION:
If USE-COUNT is set
then FILE can be opened for READing only.
If- WRITE-BIT is set
then FILE cannot be opened.
« else open file by CREATING FILE-DESCRIPTOR

PROCESS NAME: CREATE CENTRAL-FILE-BLOCK
PROCESS NUMBER: 3.8.3
PROCESS DESCRIPTION:
Record: FILE-NAME
STARTING~-BLOCK
USE-COUNT
WRITE~-BIT
DEVICE-DESCRIPTOR-ADDRESS
Link to DEVICE-DESCRIPTOR with other CENTRAL-FILE-BLOCKS.
One CENTRAL-FILE-BLOCK for each open FILE.

215

A s, R A A, M A et R | SR Y i a1 ge e, ORI ik

PROCESS NAME: DELETE LOCAL FILE BLOCK

PROCESS NUMBER: 4,1 ﬂ
PROCESS DESCRIPTION:

Locate and delete LOCAL-FILE~BLOCK associated with

FILE-NAME,
PROCESS NAME: UPDATE STATUS
g PROCESS NUMBER: 4.2
3 PROCESS DESCRIPTION:
Decrement USE~COUNT in CENTRAL-FILE-BLOCK associated with #
FILE-NAME,

Read current USE-COUNT,

[A SR PRI ML

PROCESS NAME: DELETE CENTRAIL FILE BLOCK
] PROCESS NUMBER: 4.3
: PROCESS DESCRIPTION: t

If USE-COUNT is not set after UPDATE STATUS (4.2)
then delete CENTRAL-FILE-BLOCK

|
3
1

*i 216

F e e sy

4 DATA FLOW NAME:
l ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:

COMMENTS :

8 DATA ELEMENT NAME:
[| ALIASES:

COMPOSITION:
SOURCE :

o DESTINATION:
COMMENTS :

1 DATA ELEMENT NAME:
g ALIASES:

’ COMPOSITION:

|

|

i

SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

. SOURCE:
DESTINATION:
£ COMMENTS ¢

DATA DICTIONARY
FOR INPUT/OUPUT MANAGEMENT

BLOCK
REQUEST-BLOCK
BLOCK = DESTINATION

+ OPERATION-MODE

+ ORIGINATING PROCESS

+ ERROR ADDRESS

+ BLOCK-ID
ASSEMBLE REQUEST BLOCK (2.1)
REMOVE REQUEST (3.1)
ADD TO DEVICE SERVICE QUEUE (2.3)
INITIATE 1I/0 (3.2)
INITIATE INPUT/OUTPUT REQUEST LEVEL,
EXECUTE DEVICE HANDLER LEVEL.

BLOCK-1ID

NONE

BLOCK-ID = INTEGER

ASSEMBLE REQUEST BLOCK (2.1)

DELETE FROM LIST (3.3)

NOTIFY DEVICE HANDLER (2,2)

INITIATE INPUT/OUTPUT (3.2)

INITIATE INPUT/OUTPUT REQUEST LEVEL,
EXECUTE DEVICE HANDLER LEVEL.

DATA-TRANSLATED

NONE

DATA-TRANSLATED = DATA READY FOR
TRANSFER TO DESTINATION

TRANSLATE DATA (3.4)

TRANSFER DATA (3.5)

EXECUTE DEVICE HANDLER LEVEL

DEVICE-PARAMETERS

NONE

DEVICE-PARAMETERS = DEVICE-ID
+ DEVICE-STATUS

+ LOCATION OF TRANSLATION TABLE

+ DEVICE-CHARACTERISTICS
MAP LOGICAL TO PHYSICAL DEVICE (1)
ASSEMBLE REQUEST BLOCK (2.1)

INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

217

W ¢ PR

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

NAME :

DATA FLOW NAME:

ALIASES:
COMPOSITION:

SOURCE ;
DESTINATION:
COMMENTS :

DATA FLOW NAME:

ALIASES:
COMPOSITION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS ¢

DATA FLOW NAME:

ALIASES:
COMPOSITION:
SOURCE :
DESTINATION:
COMMENTS :

ERROR-MESSAGE

NONE

ERROR-MESSAGE = DATA PLANTED BY
INITIATE I/0 (3.4)

CHECK I/0 PARAMETERS (4)

INPUT/OUTPUT SOURCE

INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

INPUT-DATA

NONE

INPUT-DATA = DATA TO BE TRANSLATED
INITIATE INPUT/OUTPUT (3.2)
TRNSFER DATA (3.5)

EXECUTE DEVICE HANDLER LEVEL

1/0 REQUEST
NONE

1/0 REQUEST = DESTINATION
+ SOURCE

+ OPERATION-MODE
INPUT/OUTPUT REQUEST SOURCE

MAP LOGICAL TO PHYSICAL DEVICE (1)
INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

OPERATION-MODE

NONE

OPERATION-MODE = INPUT | OUTPUT

USED IN THE REQUEST-BLOCK TO INDICATE
MODE OF TRANSFER DESIRED, ALSO USED AS
A CHARACTERISTIC OF A DEVICE,

OUTPUT-DATA

NONE

OUTPUT-DATA DATA READY TO BY TRANSFERED
INITIATE I/0 (3.2)

TRANSLATE DATA (3.4)

EXECUTE DEVICE HANDLER LEVEL

PHYSICAL-DEVICE

NONE

PHYSICAL-DEVICE = PERIPHERAL-ID

MAP LOGICAL TO PHYSICAL (1)

CHECK I/0 PARAMETERS (4)

INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

218

i i i |

3 ekt

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:
SOURCE :
DESTINATION:
COMMENTS :

DATA FLOW NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

PROCESS~NOTIFICATION

NONE

PROCESS~-NOTIFICATION = MESSAGE OF
COMPLETION TO ORIGINATING PROCESS

NOTIFY PROCESS (3.6)

ORIGINATING PROCESS

EXECUTE DEVICE HANDLER,

ORIGINATING PROCESS IS INDICATED BY

THE ENTRY IN THE REQUEST-BLOCK

REQUEST-NOTICE

NONE

REQUEST-NOTICE = MESSAGE TO DEVICE-
HANDLER ABOUT NEW I/O REQUEST

NOTIFY DEVICE HANDLER (2,2)

REMOVE REQUEST (3.1)

INITIATE INPUT/OUTPUT REQUEST LEVEL TO

EXECUTE DEVICE HANDLER LEVEL

REQUEST~SERVICED-MESSAGE

PROCESS NOTIFICATION

SEE ALIASE

EXECUTE DEVICE HANDLER (3)

SEE ALIASE

INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

TRANSFER-COMPLETE

NONE

TRANSFER-COMPLETE = MESSAGE INDICATING
DATA TRANSFER IS FINISHED

TRANSFER DATA (3.5)

NOTIFY PROCESS (3.6)

EXECUTE DEVICE HANDLER LEVEL

T i i aresd o] A Mo BNIPE XICil I0 ik .. s rms AR - 0

FILE DEFINITIONS
FOR INPUT/OUTPUT MANAGEMENT

FILE OR DATABASE NAME: DEVICE-DESCRIPTOR
ALIASES: NONE
COMPOSITION: DEVICE-DESCRIPTOR = DEVICE-ID
+ LOCATION OF TRANSLATION-TABLE
+ CURRENT STATUS
+ CURRENT USER-PROCESS
+ DEVICE-SERVICE-LIST
+ CURRENT REQUEST-BLOCK
ORGANIZATION: RECORD
: COMMENTS : INPUT/OUTPUT MANAGEMENT OVERVIEW

b FILE OR DATABASE NAME: DEVICE-DESCRIPTOR-TABLE
" ALIASES: NONE

.k: COMPOSITION: DEVICE-DESCRIPTOR-TABLE =
& {DEVICE~-DESCRIPTOR}
) ORGANIZATION: SEQUENTIAL BY DEVICE

COMMENTS : INPUT/OUTPUT MANAGEMENT OVERVIEW

- FILE OR DATABASE NAME: DEVICE-SERVICE-LIST

ALIASES: NONE

. COMPOSITION: DEVICE-SERVICE-LIST = {REQUEST-BLOCK}
ORGANIZATION: LINKED LIST
COMMENTS : INITIATE INPUT/OUTPUT REQUEST LEVEL

EXECUTE DEVICE HANDLER LEVEL

FILE OR DATABASE NAME: REQUEST-BLOCK

ALIASES: NONE
COMPOSITION: REQUEST-BLOCK = DESTINATION
+ OPERATION-MODE
+ ORIGINATING-PROCESS
+ ERROR-ADDRESS
‘ ORGANIZATION: SEQENTIAL, BY DESTINATION
% COMMENTS : REQUEST--BLOCK IS LIMKED TO THE

CORRESPONDING DEVICE-DESCRIPTOR.

220

i g S A S s Sate g

¢
)
4
;

P

PROCESS DESCRIPTIONS
FOR INPUT/OUTPUT MANAGEMENT

e u o i

PROCESS NAME: MAP LOGICAL TO PHYSICAL DEVICE

PROCESS NUMBER: 1

PROCESS DESCRIPTION:

Read LOGICAL-DEVICE from I/O-REQUEST. Match LOGICAL-
DEVICE with entry in DEVICE-DESCRIPTOR-TABLE and read
PHYSICAL~DEVICE

PROCESS NAME: ASSEMBLE REQUEST BLOCK
PROCESS NUMBER: 2.1

PROCESS DESCRIPTION:

Create REQUEST-BLOCK from DEVICE-PARAMETERS

PROCESS NAME: NOTIFY DEVICE HANDLER

PROCESS NUMBER: 2.2

PROCESS DESCRIPTION:

Use INTERPROCESS-COMMUNICATION to notify the DEVICE-HANDLER
a new REQUEST-BLOCK is in the DEVICE-SERVICE-LIST

PROCESS NAME: ADD TO DEVICE QUEUE

PROCESS NUMBER: 2.3

PROCESS DESCRIPTION:

Insert the REQUEST-BLOCK in the DEVICE-SERVICE-LIST
for the appropriate DEVICE-DESCRIPTOR.

PROCESS NAME: REMOVE REQUEST

PROCESS NUMBER: 3.1

PROCESS DESCRIPTION:

Select the highest priority REQUEST-BLOCK from the
DEVICE-SERVICE-LIST.,

PROCESS NAME: INITIATE I/0

PROCESS NUMBER: 3.2

PROCESS DESCRIPTION:

Read ‘the DEVICE-DESCRIPTOR to determine requirements for
I/0 and initiate the I/O action.

221

e g S S - Al DI e AR - i A b D e A e dars WO

PROCESS NAME: DELETE FROM LIST
PROCESS NUMBER: 3.3

PROCESS DESCRIPTION:
Delete the REQUEST-BLOCK from the DEVICE-SERVICE-LIST

after INITIATE I/O0 (3.2) has completed.

PROCESS NAME: TRANSLATE DATA
PROCESS NUMBER: 3.4

£ PROCESS DESCRIPTION:
Translate INPUT-DATA according to the TRANSLATION-TABLE

in the DEVICE-DESCRIPTOR

PROCESS NAME: TRANSFER DATA

PROCESS NUMBER: 3.5
PROCESS DESCRIPTION: Move DATA to DESTINATION

PROCESS NAME: NOTIFY PROCESS

PROCESS NUMBER: 3.6

i PROCESS DESCRIPTION:

, Signal the PROCESS-DESCRIPTOR of the current process
when TRANSFER-DATA is complete via INTERPROCESS-

COMMUNICATIONS.

PROCESS NAME: CHECK I/0 PARAMETERS

PROCESS NUMBER: 4

PROCESS DESCRIPTION: 4
‘ Check REQUEST-BLOCK against DEVICE-DESCRIPTOR i
' Check: OPERATION-MODE against CHARACTERISTICS £

DESTINATION against OPERATION-MODE j

TRANSFER-RATE
QUANITY OF DATA

R AR STl 2 4 e GULANE 335 e i s a0 L e et s

S T R s .

bt

DATA ELEMENT NAME:
ALIASES:
COMPOSITION:
SOURCE:

3 DESTINATION:

”{ COMMENTS :

f DATA FLOW NAME:
;. ALIASES:
COMPOSITION:

SOURCE ¢
DESTINATION:
& COMMENTS :

B DATA FLOW NAME:
| ALIASES:
COMPOSITION:

SOURCE :
‘ DESTINATION:
i COMMENTS :

l DATA FLOW NAME:
1' ALIASES:
' COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS:

DATA FLOW NAME:
ALIASES:
COMPCSITION:

3 SOURCE
DESTINATION:

COMMENTS :

DATA DICTIONARY

FOR SCHEDULE MANAGEMENT

BLOCKED-PROCESS

NONE

BLOCKED-PROCESS = PROCESS-ID
SCHEDULE NEW PROCESS (1.5)

CHANGE STATUS TO UNRUNNABLE (2.1.3)
DETERMINE PROCESS STATUS LEVEL

ENVIRONMENT

NONE

ENVIRONMENT = PROCESSOR REGISTERS
+ PSW

DETERMINE MEMORY ROUNDS (1.1)

INITIALIZE PROCESS (1.3)

CREATE PROCESS LEVEL

1/0-REQUEST
NONE
I/0-REQUEST = MEMORY-BOUNDS

+ PROCESS LOCATION
INITIATE SWAP I/O (3.4)
INPUT/OUTPUT MANAGER
SWAP PROCESS LEVEL

JOB-TYPE

NONE

JOB-TYPE = USER | SYSTEM
DETERMINE MEMORY BOUNDS (1.1)
ASSIGN PRIORITY (1.4)

CREATE PROCESS LEVEL

MEMORY-BOUNDS

NONE

MEMORY-BOUNDS = STARTING-ADDRESS
+ ENDING-ADDRESS

MEMORY MANAGER

DETERMINE MEMORY BOUNDS (1.1)

DETERMINE MEMORY AVAILABLE (3.1)

CREATE PROCESS LEVEL.,

SWAP PROCESS LEVEL,

224 G e

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:

DESTINATION:
COMMENTS :

3 DATA FLOW NAME:
%) ALIASES:
3 COMPOSITION:

SOURCE ;
DESTINATION:

COMMENTS :

DATA FLOW NAME:
ALIASES: :
COMPOSITION:

SOURCE:
- DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:

: COMPOSITION:

~-’ SOURCE:
DESTINATION:

COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

L

v 302 IR i SN (K DM e a7, AL 4 A e 0§ s wr e A LN £ 4 Awt

MEMORY-REQUEST

NONE

MEMORY-~REQUEST = PROCESS~ID
DETERMINE MEMORY BOUNDS (1.1)
DETERMINE MEMORY AVAILABLE (3.1)
MEMORY MANAGER

CREATE PROCESS LEVEL,

SWAP PROCESS LEVEL.

MEMORY~RESPONSE

NONE

MEMORY-RESPONSE = MEMORY-BOUNDS
| NO-FIT-MESSAGE

USER OR SYSTEM REQUEST

DETERMINE MEMORY BOUNDS (1.1)

CREATE PROCESS LEVEL

NEW-JOB

NONE

NEW-JOB = PROGRAM-LOCATION
+ USER-ID

USER OR SYSTEM REQUEST
DETERMINE MEMORY BOUNDS (1.1)
CREATE PROCESS LEVEL

NEW-PROCESS

NONE

NEW-PROCESS = PROCESS-DESCRIPTOR
SCHEDULE NEW PROCESS (1.5)
DETERMINE PROCESS STATUS (2.1.1)
DETERMINE PROCESS STATUS LEVEL

PREEMPTED~PROCESS

NONE -

PREEMPTED-PROCESS = PROCESS-ID
SCHEDULE NEW PROCESS (1.5)
CHANGE STATUS RUNNABLE (2.1.2)
DETERMINE PROCESS STATUS LEVEL.

PREEMPTED BY TIMER INTERRUPT ROUTINE.
STATUS CHANGES FROM RUNNING TO RUNNABLE

225

s £ S il i S bt

e ¢~ bt S . AU e el TN Wl N5 KO .- 50 G M i oot = e 4 e < s s e e P s

DATA FLOW NAME:
ALIASES:

COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

COMMENTS:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE ;
DESTINATION:
COMMENTS :

PROCESS-CONDITION
QUEUE-REQUEST
PROCESS-CONDITION = PROCESS-ID
+ [READY-Q | WAIT-Q]
REQUEST QUEUE ACTION (2.1.5)
SELECT QUEUE ACTION (2.3.1)
DETERMINE PROCESS STATUS LEVEL,
READY-(Q) AND WAIT-Q ARE INDICATIONS OF
WHERE THE PROCESS MUST BE LOCATED.

PROCESS-IMAGE

ENVIRONMENT

PROCESS~-IMAGE = PROCESSOR REGISTERS
+ PSW

AN ELEMENT OF PROCESS-DESCRIPTOR

PROCESS~INFO
NONE
PROCESS-INFO = PROCESS-ID

+ [WAIT-Q | READY-Q]
SELECT QUEUE ACTION (2.3.1)
DELETE FROM QUEUE (2.3.2)
ENTER PROCESSOR QUEUE LEVEL

QUEUE
NONE
QUEUE = PROCESS-ID

+ [WAIT-Q | READY-Q]
DELETE FROM QUEUE (2,3.2)
DETERMINE QUEUE (2.3.3)
ENTER PROCESSOR QUEUE LEVEL

QUEUE-PRIORITY
NONE
QUEUE~PRIORITY = HIGHEST PRIORITY IN
THE READY-QUEUE
+ HIGHEST PRIORITY IN
THE WAIT-QUEUE
DETERMINE QUEUE PRIORITY (2.2.1)
DETERMINE STATUS (2.2.2)
DETERMINE RUNNING PROCESS

226

wa e e w20

DATA FLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:

ALIASES:
COMPOSITION:

SOURCE :
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

COMMENTS :

DATA FLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT NAME:

ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

QUEUE-REQUEST
PROCESS-CONDITION

SEE ALIASE

REQUEST QUEUE ACTION (2.1.5)
SELECT QUEUE ACTION (2.3.1)
ENTER PROCESSOR QUEUE LEVEL

QUEUE-STATUS

NONE

QUEUE-STATUS = PROCESS-~ID IN WAIT-QUEUE
| PROCESS-ID IN READY-QUEUE

DETERMINE STATUS (2.2.2)

DETERMINE LOCATION (2.2.3)

DETERMINE RUNNING PROCESS LEVEL

READY-Q

NONE

READY~Q = INDICATION OF WHERE A PROCESS
IS MOVING TO

USED IN THE ENTER PROCESSOR QUEUE LEVEL

AND THE DETERMINE PROCESS STATUS LEVEL,

CONVERSE IS WAIT-Q.

READY-QUEUE-INFO

NONE

READY-QUEUE-INFO = PROCESS-ID
DETERMINE QUEUE (2.3.3)

ADD TO QUEUE (2.3.5)

ENTER PROCESSOR QUEUE LEVEL

READY-QUEUE~PRIORITIES

NONE

READY-QUEUE~PRIORITIES = HIGHEST
PRIORITY IN THE READY-QUEUE

READY~QUEUE

DETERMINE QUEUE PRIORITY (2.2.1)

DETERMINE RUNNING PROCESS LEVEL

3 .

ket T ol Sy Wi B e it

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS:

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

RUN-PROCESS

RUN-PROCESS-1D

RUN-PROCESS = PROCESS-ID

DETERMINE LOCATION (2.2.3)

CHANGE STATUS TO RUNNING (2.1.4)
DETERMINE RUNNING PROCESS LEVEL.
HIGHEST RUNNABLE PROCESS IN SYSTEM

RUN-PROCESS~ID

RUN~PROCESS

SEE ALIASE

SEE ALIASE

SEE ALIASE

DETERMINE PROCESS STATUS LEVEL

RUNNABLE-PROCESS-ID

NONE

RUNNABLE-PROCESS~ID = PROCESS-ID
DETERMINE PROCESS STATUS (2.1.1)

CHANGE STATUS TO RUNNABLE (2.1.2)
DETERMINE PROCESS STATUS LEVEL

RUNNABLE-STATUS

NONE

RUNNABLE-STATUS = PROCESS-ID + READY-Q
CHANGE STATUS TO RUNNABLE (2.1.2)
REQUEST QUEUE ACTION (2.1.5)

DETERMINE PROCESS STATUS LEVEL

STATUS
NONE
STATUS = RUNNING

| RUNNABLE

] UNRUNNABLE
SCHEDULER

PROCESS-DESCRIPTOR
AN ELEMENT OF A PROCESS-DESCRIPTOR

‘228

Ay

W e e didonr oo

|
i
i

i g, : e - Mg e N g IS WMot o T Y AR e ke L v I R e Spar v T

4
3
DATA FLOW NAME: SWAP-APPROVAL :
ALIASES: NONE
COMPOSITION: SWAP-APPROVAL = MEMORY-~RESPONSE
+ PROCESS-ID
SOURCE ; DETERMINE MEMORY AVAILABLE (3.1)
DESTINATION: EXECUTE SWAP-IN (3.2)
COMMENTS ; SWAP PROCESS LEVEL
1 DATA FLOW NAME: SWAP-IN-INFO
i ALIASES: NONE
COMPOSITION: SWAP-IN-INFO = SWAP-APPROVAL
. + PROCESS~LOCATION
. SOURCE ; EXECUTE SWAP IN (3.2)
‘ DESTINATION: INITIATE SWAP 1/0 (3.4)
P COMMENTS ; SWAP PROCESS LEVEL

REQUIRED TO INITIATE I/0 REQUEST

DATA FLOW NAME: SWAP-IN-REQUEST
ALIASES: NONE
COMPOSITION: SWAP-IN-REQUEST = PROCESS-ID
+ PROCESS-LOCATION
3 SOURCE : DETERMINE LOCATION (2.2.3)
: DESTINATION: DETERMINE MEMORY AVAILABLE (3.1)
5 COMMENTS : SWAP PROCESS LEVEL
i
|
| DATA FLOW NAME: SWAP-OUT- INFO
| ALIASES: NONE
3 COMPOSITION: SWAP-OUT-INFO = PROCESS-ID
{ + MEMORY~ADDRESS
| SOURCE : EXECUTE SWAP OUT (3.3)
¥ DESTINATION: INITIATE SWAP I/0 (3.4)
‘ COMMENTS : SWAP PROCESS LEVEL.,
! REQUIRED TO INITIATE I/O REQUEST.

: DATA FLOW NAME: SWAP-OUT-REQUEST

. ALIASES: NONE

3 COMPOSITION: SWAP-OUT-REQUEST = PROCESS-ID
SOURCE DETERMINE LOCATION (2.2.3)
DESTINATION: EXECUTE SWAP OUT (3.3)
COMMENTS : SWAP PROCESS LEVEL

e, LA PRSI, £on % IR b oo ol A e AP o A Ml A e o e el

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS ;

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS ;

DATA ELEMEMT NAME:
ALIASES: ’
COMPOSITION:

COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE :
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

SWAP-OUT-REQUIREMENT

NONE

SWAP-OUT-REQUIREMENT = NO-FIT-MESSAGE
DETERMINE MEMORY AVAILABLE (3.1)
DETERMINE QUEUE PRIORITY (2,2.1)

SWAP PROCESS LEVEL,

INDICATES ROOM MUST BE MADE IN MEMORY
BEFORE A SWAP-IN CAN OCCUR.

SWAP-REQUEST

NONE

SWAP-REQUEST = SWAP-IN-~REQUEST
| SWAP-OUT-REQUEST

DETERMINE LOCATION (2.2.3)

EXECUTE MEMORY SWAP (3)

DETERMINE RUNNING PROCESS

WAIT-Q

NONE

WAIT-Q = INDICATION OF WHERE A PROCESS
IS MOVING TO

USED IN THE ENTER PROCESSOR QUEUE LEVEL

AND THE DETERMINE PROCESS STATUS LEVEL.

CONVERSE IS READY-Q,

WAIT-QUEUE-INFO

NONE

WAIT-QUEUE-INFO = PROCESS-ID
DETERMINE QUEUE (2.3.3)

ADD TO WAIT QUEUE (2.3.4)
ENTER PROCESSOR QUEUE LEVEL

WAIT-QUEUE-PRIORITIES

NONE

WAIT-QUEUE-PRIORITIES = HIGHEST PRIORITY
IN THE WAIT-QUEUE

WAIT-QUEUE
DETERMINE QUEUE PRIORITY (2,2.1)
DETERMINE RUNNING PROCESS LEVEL

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE :
DESTINATION:
COMMENTS :

d WY e Pl S0 AN R hgs SR £ T A S i i S et Wb b

UNRUNNABLE-PROCESS-1ID

NONE

UNRUNNABLE-PROCESS-ID = PROCESS-ID
DETERMINE PROCESS STATUS (2.1.1)
CHANGE STATUS TO UNRUNNABLE (2,1.3)
DETERMINE PROCESS STATUS LEVEL

UNRUNNABLE-STATUS

NONE

UNRUNNABLE-STATUS = PROCESS~-ID + WAIT-Q
CHANGE STATUS TO UNRUNNABLE (2,1.3)
REQUEST QUEUE ACTION (2.1.5)

DETERMINE PROCESS STATUS

231

i ¢ e e

ot S g

coia Ao, ialbnitne: <, SN A el -5 i s OIS 5 3 i SN T. AE AT 3 A 5 £ IV i 05 0 e R R

FPILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS ¢

FILE OR DATABASE NAME:
ALIASES:

COMPOSITION:
ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:

COMPOSITION:
ORGANIZATION:
COMMENTS :

FILE DEFINITIONS
FOR SCHEDULE MANAGEMENT

NEW-PROCESS-DESCRIPTOR

NONE

NEW~PROCESS-DESCRIPTOR = PROCESS~-
DESCRIPTOR

RECORD

CREATE PROCESS LEVEL

PROCESS-DESCRIPTOR

PROCESS

PROCESS-DESCRIPTOR = USER-ID
PROCESS-ID

PRIORITY

STATUS

MEMORY-BOUNDS
PROCESS-IMAGE
POINTER-TO-NEXT-PROCESS

++++++

RECORD
ELEMENT OF PROCESS-STRUCTURE

PROCESS-STRUCTURE

PROCESSOR~QUEUE

PROCESS-STRUCTURE = READY-QUEUE
+ WAIT-QUEUE

SCHEDULE MANAGEMENT OVERVIEW LEVEL

READY-QUEUE

NONE

READY-QUEUE = {PROCESS-DESCRIPTOR}
LINKED LIST

EXECUTE SCHEDULER LEVEL

ENTER PROCESSOR QUEUE LEVEL

WAIT-QUEUE

NONE

WAIT-QUEUE = {PROCESS-DESCRIPTOR}
LINRED LIST

EXECUTE SCHEDULER LEVEL

ENTER PROCESSOR QUEUE LEVEL

232

L KR 2T R Mtz S aitin M T g e e S ke, Wb L

PROCESS DESCRIPTIONS
FOR SCHEDULE MANAGEMENT

PROCESS NAME: DETERMINE PROCESS IMAGE 4

PROCESS NUMBER: 1.1

PROCESS DESCRIPTION: '

b Request memory for NEW-PROCESS

9 If memory is available

4 then record MEMORY-~BOUNDS in PROCESS-DESCRIPTOR and
make STATUS = RUNNABLE

else make STATUS = UNNRUNNABLE

PROCESS NAME: INITIALIZE PROCESS
3 PROCESS NUMBER: 1.2
! PROCESS DESCRIPTION:

g? If PROCESS is a NEW-~PROCESS

1 then set PSW and PROCESSOR-REGISTERS to nil
1
f

f‘ PROCESS NAME: ASSIGN PRIORITY
PROCESS NUMBER: 1.3

&F PROCESS DESCRIPTION:

- If PROCESS is a SYSTEM-PROCESS

then set PRIORITY high
else set PRIORITY low

PROCESS NAME: SCHEDULE

PROCESS NUMBER: 1.4

PROCESS DESCRIPTION:

Interrupt SCHEDULER to introduce NEW-PROCESS

Extract NEW-PROCESS-DESCRIPTOR and send to SCHEDULER

PROCESS NAME: DETERMINE PROCESS STATUS

PROCESS NUMBER: 2.1.1

PROCESS DESCRIPTION:

If NEW-PROCESS is in memory I
then PROCESS is RUNNABLE

If NEW-PROCESS is not in memory
then PROCESS is UNRUNNABLE

-
19
ke
I .
‘g

’ 233

e e e

PROCESS NAME: CHANGE TO RUNNABLE

PROCESS NUMBER: 2,1.,2

PROCESS DESCRIPTION:

If PROCESS was preempted by a timer interrupt I
then change STATUS from RUNNING to RUNNABLE ' g

If PROCESS is new j

then STATUS = RUNNABLE

PROCESS NAME: CHANGE TO UNRUNNABLE
PROCESS NUMBER: 2.1.3
PROCESS DESCRIPTION:
If PROCESS is BLOCKED-PROCESS

then STATUS = UNRUNNABLE and record UNRUNNABLE-STATUS
If PROCESS is NEW-PROCESS ‘
then STATUS = UNRUNNABLE and UNRUNNABLE-STATUS = NO- .
MEMORY '

PROCESS NAME: CHANGE TO RUNNING
PROCESS NUMBER: 2.1.4

PROCESS DESCRIPTION:

CHANGE the PROCESS-DESCRIPTOR in READY-QUEUE associated
with PROCESS-ID to indicate STATUS = RUNNING.

PROCESS NAME: DETERMINE QUEUE CHANGES
PROCESS NUMBER: 2.1.5
PROCESS DESCRIPTION:
If PROCESS-STATUS = RUNNABLE

then PROCESS-DESCRIPTOR must be in READY-QUEUE
If PROCESS-STATUS = UNRUNNABLE
then PROCESS-DESCRIPTOR must be in WAIT-QUEUE

PROCESS NAME: DETERMINE QUEUE PRIORITY {
PROCESS NUMBER: 2.2.1) ;
PROCESS DESCRIPTION:

Read the highest PRIORITY in the READY-QUEUE

Read the highest PRIORITY in the WAIT-QUEUE blocked
for memory

N BN ket AN Bl 1 M ATk SF i bt it APt Gt SRR . SR 51D I bl g

A

LR v

PROCESS NAME: DETERMINE STATUS

PROCESS NUMBER: 2.2.2

PROCESS DESCRIPTION:

If a WAIT-QUEUE PROCESS has the highest of the two priorities
then it is selected

else the highest in the READY-QUEUE is selected

PROCESS NAME: DETERMINE LOCATION

PROCESS NUMBER: 2.2.3

PROCESS DESCRIPTION:

If a WAIT-QUEUE PROCESS was selected
then make a SWAP-IN-REQUEST

If a READY-QUEUE PROCESS was selected
then it is the RUN-PROCESS

PROCESS NAME: SELECT QUEUE ACTIONS

PROCESS NUMBER: 2.3.1

PROCESS DESCRIPTION:

If QUEUE-REQUEST = WAIT-Q

‘ then delete from READY-QUEUE and add to WAIT-QUEUE
i If QUEUE-REQUEST = READY-Q

: then delete from WAIT-QUEUE and add to READY-QUEUE
. If QUEUE-REQUEST = terminate PROCESS

then delete from PROCESS-STRUCTURE

PROCESS NAME: DELETE FROM QUEUE STRUCTURE
PROCESS NUMBER: 2.3.2
PROCESS DESCRIPTION:
If PROCESS-INFO not equal to terminate
then QUEUE = PROCESS-INFO
Delete PROCESS from PROCESS-STRUCTURE

T

PROCESS NAME: DETERMINE QUEUE ENTRY F
PROCESS NUMBER: 2.3.3 :
PROCESS DESCRIPTION:
If QUEUE contains WAIT-Q

then add to WAIT-QUEUE
IF QUEUE contains READY-Q

then add to READY-QUEUE

L g

235

B R

MR S SO otk D 0N e AN NI RO~ A BN 5 5w o

f PROCESS NAME: ADD TO WAIT QUEUE
v - PROCESS NUMBER: 2.3.4

3 PROCESS DESCRIPTION:

Examine PROCESS-PRIORITY of PROCESS-ID
Insert in WAIT-QUEUE by priority

PROCESS NAME: ADD TO READY QUEUE
PROCESS NUMBER: 2.3.5

PROCESS DESCRIPTION:

Examine PROCESS-PRIORITY of PROCESS-ID
Insert in READY-QUEUE by priority

d PROCESS NAME: DETERMINE MEMORY
3 PROCESS NUMBER: 3.1
" PROCESS DESCRIPTION:
f} Request memory for the process to swap-in
- If MEMORY-RESPONSE is negative
i then issue a SWAP-OUT-REQUIREMENT
If MEMORY-RESPONSE is positive
then issue a SWAP-APPROVAL

PROCESS NAME: EXECUTE SWAP-IN
PROCESS NUMBER: 3.2
- PROCESS DESCRIPTION:

: Determine location of the process to swap-in

! PROCESS NAME: EXECUTE SWAP-OUT
(PROCESS NUMBER: 3.3

PROCESS DESCRIPTION:

Determine location of the process to swap-out

4 cnbl N I S Sl A+ 1741 8 S AR DG N5 VT er Y Yo e iy e o xe s A R O RPN T Y Ty 1y S e it

PROCESS NAME: INITIATE 1/0

PROCESS NUMBER: 3.4

PROCESS DESCRIPTION:

3 Issue I/O-REQUEST to the INPUT/OUTPUT MANAGER

e b~ e .

j | 237

M A AN 5 e = O A SN AN A Sl NI 221 353 SN K A s

DATA DICTIONARY
FOR MEMORY MANAGEMENT

it ael it

DATA ELEMENT NAME: ACCEPTED-FREE-AREA

ALIASES: NONE ;
| COMPOSITION: ACCEPTED-FREE-AREA = MEMORY-SIZE
| - PROCESS-SIZE ﬁ
SOURCE : COMPARE AREA WITH SIZE (2.2)
f DESTINATION: UPDATE FREE AREA TABLE (2.3)]
j COMMENTS : SELECT FREE AREA LEVEL 1
a DATA FLOW NAME: AREA-PARAMETERS
- ALIASES: NONE
A COMPOSITION: AREA-PARAMETERS = PROCESS-ID »
- + MEMORY-SIZE '
- | + MEMORY-LOCATION
. SOURCE ; MATCH ENTRY AND PROCESS (5.1)

‘ DESTINATION: ADJUST FREE SPACE (5.3)
3 UPDATE MEMORY TABLE (5.2)
}5 COMMENTS : DEALLOCATE MEMORY SPACE LEVEL

DATA FLOW NAME: FREE-AREA-SIZE .

: ALIASES: NONE f
u COMPOSITION: FREE-AREA-SIZE = MEMORY-SIZE

: SOURCE : EXAMINE FREE AREA (2.1)

: DESTINATION: COMPARE AREA WITH SIZE (2.2)
| COMMENTS : SELECT FREE AREA LEVEL
1

: DATA FLOW NAME: DEALLOCATE-REQUEST

’ ALIASES: PROCESS-1D
COMPOSITION: DEALLOCATE-REQUEST = PROCESS-I D
SOURCE : DETERMINE NEED (1)
DESTINATION: DEALLOCATE MEMORY (5)
COMMENTS : MEMORY MANAGEMENT LEVEL
E: N
DATA FLOW NAME: MEMORY -BOUNDS 1
i ALIASES: NONE ‘
COMPOSITION: MEMORY-BOUNDS = STARTING-ADDRESS i
+ ENDING-ADDRESS
SOURCE ; RECORD PROCESS BOUNDS (4)
DESTINATION: MEMORY REQUEST SOURCE
COMMENTS : MEMORY MANAGEMENT LEVEL
L 4

AT " : " s X B b A o, aop T3, ety e S 4 Y MO Gt Bt A - NI SO KU T M S 5 in A g A o1 >

i

DATA FLOW NAME: NO-FIT-MESSAGE v‘

ALIASES: NONE
COMPOSITION: NO-FIT-MESSAGE = INDICATION OF LACK
OF MEMORY FOR PROCESS-SIZE
: SOURCE : COMPARE AREA WITH SIZE (2.2) !
o DESTINATION: RECORD PROCESS BOUNDS (4) |
COMMENTS : SELECT FREE AREA LEVEL :
|
ﬁj DATA FLOW NAME: PROCESS-BOUNDS
ol ALIASES: NONE
w COMPOSITION: PROCESS-BOUNDS = NO-FIT-MESSAGE
. | MEMORY~BOUNDS
- SOURCE : SELECT AREA (2) !
' DESTINATION: RECORD PROCSS BOUNDS (4)
E COMMENTS ; MEMORY MANAGEMENT LEVEL
x
= DATA ELEMENT NAME: PROCESS-ID
ALIASES: DEALLOCATE-REQUEST
COMPOSITION: PROCESS-ID = UNIQUE ID ASSIGNED BY SYSTEM
| SOURCE: DETERMINE NEED (1)
3 DESTINATION: MATCH ENTRY AND PROCESS (5.1)
g COMMENTS : DEALLOCATE MEMORY SPACE LEVEL
: DATA FLOW NAME: PROCESS-MAP
; ALIASES: NONE
: COMPOSITION: PROCESS~MAP = PROCESS-ID
' + MEMORY-LOCATIOM
= + MEMORY-SIZE
| SOURCE: SELECT AREA (2)
, DESTINATION: ASSIGN AREA (3)
COMMENTS : MEMORY MANAGEMENT LEVEL
DATA FLOW NAME: PROCESS-NEEDS
. ALIASES: NONE
x COMPOSITION: PROCESS-NEEDS = DEALLOCATE-REQUEST
¢ | PROCESS-SIZE
SOURCE : SCHEDULER LEVEL
DESTINATION: DETERMINE NEED (1)
COMMENTS : MEMORY MANAGEMENT LEVEL

DATA FLOW NAME:
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

« i B ey S I St | - . S SR XY el TR i, S My T [

PROCESS-SIZE

NONE

PROCESS-SIZE = AMOUNT OF MEMORY REQUIRED
DETERMINE NEED (1)

SELECT AREA (2)

MEMORY MANAGEMENT LEVEL

240

o

. 05, L Sl o, NS 5P GBI SR 7 7 o NS v a o s e

PN g

FILE DEFINITIONS

FOR MEMORY MANAGER

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FREE-SPACE~TABLE
NONE
FREE-SPACE~-TABLE {MEMORY-SIZE
MEMORY-LOCATION

MEMORY-STATUS}

+ <+ 0

TABULAR BY SIZE
DEALLOCATE MEMORY SPACE LEVEL

MEMORY-MAP-TABLE

NONE

MEMORY-MAP-TABLE = {PROCESS-ID
+ MEMORY-SIZE
+ MEMORY-LOCATION
+ MEMORY-STATUS}

TABULAR BY PROCESS-ID
MEMORY MANAGEMENT LEVEL,
DEALLOCATE MEMORY SPACE LEVEL

241

A S — s 17

e

. g . N 3
et e e e m % ;o

——

ot

%

| i - St

i bl T ' T R0 i ST AR WML 5. octans A - e NN bt e o L . e e e aares et e e ki

PROCESS DESCRIPTIONS
FOR MEMORY MANAGEMENT

PROCESS NAME: DETERMINE NEED

PROCESS NUMBER: 1

PROCESS DESCRIPTION:

If PROCESS-NEEDS contain MEMORY-SIZE and PROCESS-ID
then MEMORY-SIZE = PROCESS-SIZE

If PROCESS-NEEDS contain only PROCESS-ID
then DEALLOCATE MEMORY of PROCESS-ID

PROCESS NAME: ASSIGN AREA

PROCESS NUMBER: 3
PROCESS DESCRIPTION:
Assign the process an entry in the MEMORY-MAP-TABLE

PROCESS NAME: RECORD PROCESS BOUNDS

PROCESS NUMBER: 4

PROCESS DESCRIPTION:

Write the starting address and ending address to the
PROCESS-DESCRIPTOR of the associated process

PROCESS NAME: EXAMINE FREE AREA

PROCESS NUMBER: 2.1

PROCESS DESCRIPTION:

Select a free area from the FREE-SPACE-TABLE and
determine its size.

PROCESS NAME: COMPARE AREA WITH SIZE

PROCESS NUMBER: 2,2

PROCESS DESCRIPTION: .

If PROCESS-SIZE is less than or equal to FREE-AREA-SIZE
then accept the FREE-AREA

else reject the FREE-~AREA

242

R

<t~ D TP Ay oot

e e e .l

. e ey
L.

bl il i

A A~ S5 it AT A, MM AR iy 4 e S et el s - B e

PROCESS NAME: UPDATE FREE AREA TABLE

PROCESS NUMBER: 2.3

PROCESS DESCRIPTION:

Remove the ACCEPTED-FREE-AREA from the FREE-AREA~TABLE

PROCESS NAME: MATCH ENTRY AND PROCESS

PROCESS NUMBER: 5.1

PROCESS DESCRIPTION:

Search MEMORY-MAP-TABLE for PROCESS-ID

AREA-PARAMETERS = MEMORY-SIZE + MEMORY-LOCATION of entry

PROCESS NAME: UPDATE MEMORY TABLE
PROCESS NUMBER: 5.2

PROCESS DESCRIPTION:

Change MEMORY-STATUS to AVAILABLE

Delete PROCESS-ID entry from MEMORY~-MAP-TABLE

PROCESS NAME: ADJUST FREE SPACE
PROCESS NUMBER: 5.3

PROCESS DESCRIPTION:

Add FREE-SPACE to FREE~SPACE-TABLE.
Merge with adjacent areas.

243

i ? T i A P, R R I 3. v - 2 et A L s 1 -t PR TR R I i o L Tt

L
)

DATA ELEMENT
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSI'MTON:
SOURCE:
DESTINATION:
COMMENTS ;

DATA ELEMENT
ALIASES:
COMPOSITION:
SOURCE
DESTINATION:
COMMENTS :

DATA ELEMENT
ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

NAME:

NAME ¢

NAME:

NAME:

DATA FLOW NAME:

ALIASES:
COMPOSITION:
SOURCE:
DESTINATION:
COMMENTS :

DATA DICTIONARY
FOR THE NUCLEUS

CURRENT-PRIORITY

NONE

CURRENT-PRIORITY = INTERRUPT-PRIORITY
DETERMINE PRIORITY (3.3)

DISABLE LOWER PRIORITIES (3.4)
INTERRUPT HANDLER LEVEL

CURRENT INTERRUPT EXECUTING

DISABLE-MESSAGE

NONE

DISABLE-MESSAGE = CURRENT-PRIORITY
DISABLE LOWER PRIORITIES (3.4)
PROCESSOR

INTERRUPT HANDLER LEVEL

HIGHEST-PRIORITY

NONE

HIGHEST-PRIORITY = INTERRUPT-PRIORITY
DETERMINE PRIORITY (3.3)

DETERMINE INTERRUPT ROUTINE LOCATION (3.5)
INTERRUPT HANDLER LEVEL

INTERRUPT-ID

NONE

INTERRUPT-ID = INTERRUPT-NUMBER
INTERRUPT SOURCE (SINK)
IDENTIFY INTERRUPT SOURCE (3.2)
INTERUPT HANDLER LEVEL

LOCATION

NONE

LOCATION = INTERRUPT~ROUTINE-ADDRESS
DETERMINE INTERRUPT ROUTINE LOCATION (3.5)
SERVICE INTERRUPT (3.6)

INTERRUPT HANDLER LEVEL

244

G M rm b D

€1 9" i T A B 4~ T

R R T a4

DATA FLOW NAME:
ALIASES:
COMPOSITION:

| SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

DATA FLOW NAME:
i ALIASES:
| COMPOSITION:

| SOURCE
- DESTINATION:
5 COMMENTS :

DATA FLOW NAME:
p | ALIASES:

g COMPOSITION:

' SOURCE :

' DESTINATION:
COMMENTS :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

SOURCE:
DESTINATION:
COMMENTS :

PROCESS-CONDITIONS

NONE

PROCESS~-CONDITIONS = PROCESS LOCATION
INTERRUPT ROUTINE

BLOCK (2.2) OR AWAKEN (2.3)
INTERPROCESS COMMUNICATION LEVEL

PROCESS-DESCRIPTOR
NONE
PROCESS-DESCRIPTOR = PROCESS-~ID
+ PROCESS~IMAGE
+ MEMORY~BOUNDS
+ USER-ID
+ STATUS
TEST FOR CURRENT PROCESS (1.1)
UPDATE PROCESSOR STATE (1.2)
DISPATCH PROCESS LEVEL

PROCESS-ENVIRONMENT

PROCESS-IMAGE

PROCESS-ENVIRONMENT = PROCESSOR-
REGISTERS + PSW

HANDLE INTERRUPT (2)

PROCESSOR

NUCLEUS OVERVIEW LEVEL

PROCESS-1ID

NONE

PROCESS-ID = UNIQUE ID SET BY SYSTEM
TEST FOR CURRENT PROCESS (1.1)
RECORD PROCESSOR STATE (1.3)
DISPATCH PROCESS LEVEL

PROCESS-STATES

PROCESS-IMAGE

PROCESS-STATES = PROCESSOR-REGISTERS
+ PSW

PROCESSOR

RECORD PROCESSOR STATES (1.3)

DISPATCH PROCESS LEVEL

£t g Al . e R e s FNaeEI

. o o @ ok — NI BRI M 0832 e hIMD e 5 e it v e < ie P R e it L Vo)

DATA FLOW NAME: PROCESS-STATUS

3 ALIASES: NONE
E COMPOSITION: PROCESS-STATUS = RUNNABLE | UNRUNNABLE
3 SOURCE: BLOCK (2.2) CR AWAKEN (2,3)
DESTINATION: PROCESS-STRUCTURES
COMMENTS : INTERPROCESS COMMUNICATION LEVEL.

RESULTS OF BLOCK OR AWAKEN,

DATA FLOW NAME: PROCESS-STATUS-CHANGE
ALIASES: NONE
COMPOSITION: PROCESS-STATUS-CHANGE = RUNNING

| RUNNABLE | UNRUNNABLE

SOURCE: SERVICE INTERRUPT SERVICE (3.6)
DESTINATION: PROCESS-STRUCTURES

COMMENTS : INTERRUPT HANDLER LEVEL

DATA FLOW NAME: RUNNABLE-PROCESS-STATE
ALIASES: PROCESSOR-STATES

COMPOSITION: SEE ALIASE

SOURCE; UPDATE PROCESSOR STATE (1.2)
DESTINATION: PROCESSOR

COMMENTS : DISPATCH PROCESS LEVEL

&

fs ihdendian nt gty ot

o
L

W

e Wt 2
B .

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

FILE OR DATABASE NAME:
ALIASES:

COMPOSITION:
ORGANIZATION:
COMMENTS :

g oI SN 8 StV Ny e i e N A B o ST, -V s S s e

FILE DEFINITIONS
FOR THE NUCLEUS

CPU-DESCRIPTOR

NONE

CPU-DESCRIPTOR CURRENT RUNNING

PROCESS

+ POINTER TO HEAD OF
READY-QUEUE

+ POINTER TO HEAD OF

WAIT-QUEUE

TABULAR
DISPATCH PROCESS LEVEL

INTERRUPT-VECTOR~TABLE
NONE
INTERRUPT-VECTOR-TABLE =

{ INTERRUPT-NUMBER

+ INTERRUPT-ROUTINE-ADDRESS}
SEQUENTIAL BY INTERRUPT-NUMBER
INTERRUPT HANDLER LEVEL

PROCESSOR-QUEUE

NONE

PROCESSOR-QUEUE = READY-QUEUE
+ WAIT-QUEUE

LINKED LISTS

DISPATCH PROCESS LEVEL

PROCESSOR~REGISTERS
NONE
PROCESSOR~REGISTERS = PSW
+ GENERAL PURPOSE REGISTERS
TABULAR
SAVE AND RESTORE CPU LEVEL.

PROCESSOR~STACK

NONE

PROCESSOR~STACK = CPU STORAGE
LAST-IN~LAST-0OUT

SAVE AND RESTORE CPU LEVEL

247

B

PR By i

UL S

(o ARl raeinaad ML b~ Gl R B Tl e e AR A, B Bimuipis Y

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
COMMENTS :

PROCESS~STRUCTURES

NONE
PROCESS~STRUCTURES = PROCESSOR-QUEUE
+ CPU-DESCRIPTOR
+ FILE-DESCRIPTORS
+ DEVICE-SERVICE-LIST
LINKED LISTS AND TABULAR
NUCLEUS OVERVIEW LEVEL

248

e e <y WY

R L L TR L | T PRL R P R

PROCESS DESCRIPTIONS
FOR THE NUCLEUS

PROCESS NAME: TEST FOR CURRENT PROCESS

PROCESS NUMBER: 1.1

. PROCESS DESCRIPTION:

” Compare front of READY-QUEUE to the CURRENT-PROCESS

3 If the same process

then execute CURRENT-PROCESS

; else read the PROCESSOR-ID of the CURRENT-PROCESS .
3 Select the front process in the READY-QUEUE to run. :
Read the PROCESS-DESCRIPTOR and change the CURRENT-PROCESS.

PROCESS NAME: UPDATE PROCESSOR STATE

‘i PROCESS NUMBER: 1.2
- PROCESS DESCRIPTION:
» Load the PROCESS-STATES into the PROCESSOR-REGISTERS

PROCESS NAME: RECORD PROCESSOR STATE
PROCESS NUMBER: 1.3

PROCESS DESCRIPTION:
Read the PROCESSOR-REGISTERS and record them in the PROCESS-

DESCRIPTOR of PROCESS~-1D

PROCESS NAME: LOCK
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
Disable the CPU from any outside interruptions

PROCESS NAME: BLOCK
PROCESS NUMBER: 2.2 i
| PROCESS DESCRIPTION: §
Prevent a PROCESS from executing unless a specific condition :
is satisfied.

¥

PROCESS NAME: AWAKEN

PROCESS NUMBER: 2.3

PROCESS DESCRIPTION:

Remove the effect of the BLOCK process and allow execution,

PROCESS NAME: UNLOCK
PROCESS NUMBER: 2.4
PROCESS DESCRIPTION:

Remove the LOCK process (2,1)

PROCESS NAME: SAVE CPU STATE

PROCESS NUMBER: 3.1

PROCESS DESCRIPTION:

Read the PROCESSOR-REGISTERS and write them to the
PROCESSOR-STACK

PROCESS NAME: IDENTIFY INTERRUPT SOURCE
PROCESS NUMBER: 3.2

PROCESS DESCRIPTION:

Compare the INTERRUPT-ID with interrupt sources to
determine the SOURCE-ID

PROCESS NAME: DETERMINE PRIORITY
PROCESS NUMBER: 3.3
PROCESS DESCRIPTION:
Read the INTERRUPT-PRIORITY of the SOURCE-ID
If the INTERRUPT-PRIORITY of the source is higher than the
current interrupt rountine
then suspend the current interrupt
CURRENT-PRIORITY = higher interrupt priority.

250

i B R e I RS

NS pma rs it

o N A S SN A 53 o 3350 8 X b o

PROCESS NAME: DISABLE LOWER PRIORITES
PROCESS NUMBER: 3.4

PROCESS DESCRIPTION:
If interrupt priority is lower or equal to CURRENT-PRIORITY

then ignore interrupt.

PROCESS NAME: DETERMINE INTERRUPT ROUTINE LOCATION

PROCESS NUMBER: 3.5

PROCESS DESCRIPTION:

Match the HIGHEST-PRIORITY with the entry in the INTERRUPT-
VECTOR-TABLE. Read the LOCATION of the interrupt routine.

PROCESS NAME: SERVICE INTERRUPT

PROCESS NUMBER: 3.6

PROCESS DESCRIPTION:

Go to the LOCATION of the interrupt routine and execute.

ot A St ST SN Ads) DI DOLID T ol adlet SR IS, BN et e o s -

)

Appendix F 3

: Module Structure Charts 1
1 This appendex contains the module structure charts %
3 developed in Chapter Five. Techniques used to develop the TJ
charts are from Weinberg's Structured Analysis. A summary B

3 of notation and development can be found in Chapter Five,]

oy

o, 7 SN SRy

-

e ———— e W

P

252

j

RO RPN L ARy NN SN TR 875 81N o s 30 O AT, NGB " 5 s b

Index

Execute Operating System . . . ¢« ¢ o o » o o s ¢ « « » 254
Execute System Command ¢ « « ¢ o ¢ ¢ o o o « o 255
Execute Control Command . +» « & &+ o « ¢ o o o o o« o & o 256
Execute Help Command . . « 4 « ¢ o o o o o o o o o o o 257
Execute User Command . . «. . o ¢ o ¢ o o o o o o o« o » 258
Execute File Management . . . « ¢ ¢ + o o o s s o o o« o 259

Execute Open File . . o ¢ v o ¢ o o o o« o o o » o« o o o 260

A Allocate File SPACe v o o o o o ¢ o+ o o o o o o s o o « 261
'.: ExeCUte Link Files L] L] L] L] L] L] L] L] L] * L] L 4 L] * L] Ll L] L 4 262

N Create File Descriptor. . « « « ¢ ¢ o ¢ ¢ o ¢ o o« « o« o 263

Execute Close File . o ¢ ¢ ¢ o o ¢ o o o o o o o o o o« 264
, Execute Input/Output . . ¢ ¢ ¢« ¢ o ¢ o o o o o o o o« o 265
f‘ " Initiate Input/Output REQUESE . & o o « « o o « o o « o 266
Execute Device Handler . . . o« ¢ o ¢ o o o o o o o o o 267
Execute Schedule Managememt « o « ¢ o o « o » » 268
Create ProCesSs . « o « o ¢ o o o o o o o o s o o o o o 269

Execute Scheduler e o o & ° 8 e o o s+ e s o e o e e o o 270

Determine Process Status . . ¢ ¢ ¢ ¢ s ¢ o o o o« ¢« o o« 271
'4 Determine Running ProceSS ® . . o . » [. 3 . . .) . e 272
Enter ProceSsSOr QUEUES « o « o o o o o« o o o o o s o o 273

SWaAD PrOCESS ¢« o « o o o o o o o o o o s o s o s o o o 274

i ; Execute Memory Management . . « « ¢« o« « « o« o s o« o o o 275
j | i Select Free Area . o« o o o o o o o o s s o o o o o » o 276
Deallocate MEMOrY SPACE « « « « o« o o o = o o o o o o« o 277

Execute Dispatcher . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o« « o« 278

4 Execute Interrupt Handler . « . « « « ¢« « o o o o o » o 279

e N SN €05 i, Aty A NI .=+~ %l R T, WDy Y0 1 M e -

\
%
B, !
3 &
A I J
[]
t EXECUTE ;
1 OPERATING /
f SYSTEM ‘1
1 COMMAND COMMAND | RESPONSE USER !
d//(3 1 RESPONCE
3 GET USER DETERMINE TRANSMIT 1
- COMMAND COMMAND RESPONSE |
1 7 .
¥
’ |
3 | SYSTEM ™\ user |
4 COMMAND COMMAND y
1 RESPONS%{/ RESPONSE
s EXECUTE | DETERMINE
g SYSTEM COMMAND g
g COMMAND 3 g
2 | 2
,f
i CONTROL
| SESSION X, MESSAGE
| COMMAND

!

HELP J HELP
COMMAND INFO

CONTROL i
MESSAGE

N |

SYSTEM RESPONSE

«

EXECUTE EXECUTE EXECTUE ,

USER HELP CONTROL]

COMMAND COMMAND COMMAND E
6 5 4

Mt gy i e g
b e MLT

e

.~ wrendee s
.

. G4 . AN 2 . PR T TR e NN by 73wkt e

SYSTEM I lMENU
COMMAND
EXECUTE
SYSTEM
COMMAND
SESSION
COMMAND
AUTHORIZED
AUTHORIZATION COMMAND
MESSAGE/ 1 I
AUTHORIZED MENU
COMMAND AUTHORIZATION
J’ MESSAGE
VERIFY PROVIDE CONFIGURE
AUTHORITY MENU SYSTEM
2.1 2,2 2.3
255

——_

T Ty

A IS o et S5 NN opinedd gk < SRRM £ 3T i

CONTROL I RESPONSE
. COMMAND

DETERMINE
CONTROL
COMMAND

4.1

INQUIRY
\ COMMAND

LOG-IN

COMMAN ‘
e 114 INQUIRY

LOG~-IN LOG-0UT RESPONSE
PROMPT / LOG-0OUT| MESSAGE \o
COMMAND

EXECUTE
INQUIRY
4.4

i TAMAT - eI TN s T ik T S

1t

DETERMINE
HELP REQUIRED
5.1

HELP COMMAND RESPONSE

COMMAND
SYSTEM INFO &\‘ INFO REQUEST

REQUEST /)

‘\‘FOMMAND INFO

PROVIDE PROVIDE
SYSTEM COMMAND
INFO INFO
5.2 5.3

oy

ML N -
RN TS SRl T e

b

SESSION I
COMMAND

7

s s ORI R BN o 0y e AR e S S

RESPONSE

EXECUTE
USER
COMMAND

SESSION INTERPRETED
COMMAND COMMAND
COMMAND J’ COMMAND
ARGUMENTS COMMAND CONDITONS
3 CONDITIONS
INTERPRETED
COMMAND./’ COMMAND PROMPT RESPONSE
ARGUMENTS : \b
INTERPRET DETERMINE EXECUTE
COMMAND COMMAND COMMAND
STRING CONDITIONS 6.4
6.1 6.2

COMMANDJ/
REQUIREMENTS

GET
COMMAND
REQUIREMENTS

COMMAND
\FEQUIREMENTS

\fROMPT

PROMPT
USER

6.3

FILE I lb FILE
REQUEST ESCRIPTOR

LOCATE
USER FILE
DIRECTORY

2

CLOSE
DIRECTORY r 1 REQUEST

LOCATION FILE FILE -
COMMAND [DESCRIPTOR

DETERMINE EXECUTE EXECUTE
MASTER OPEN CLOSE
DIRECTORY FILE FILE
1 3 4

. R e DS T W W Sl s~ S

FILE
COMMAND,

OPEN FILE

REQUEST

DETERMINE
COMMAND
3.1

]

FILE

/

FILE
LOCATION

COMMAND

. «
T L NG T W, ke R S B RV Y W

!

{

LOCATE

ENTRY
3.2

DIRECTORY

FILE I
PARAMETERS

PHYSICAL
LOCATION]

DETERMINE
FILE

LOCATION
3.7

CREATE
FILE
DESCRIPTOR
3.8

!

ACCESS
RIGHTS

FILE
DESCRIPTOR

\{ FILE

LOCATION

ALLOCATE

FILE
SPACE
3.3

LINK
APPROVAL

CHECK

ACCESS

RIGHTS
3.5

LOGICAL
DEVICE

N FILE

PARAMETERS

ACCESS
RIGHTS

EXTRACT

DIRECTORY

DATA
3.4

\

\

DIRECTORY
LINKS

EXECUTE
LINK
FILES

3.6

-
vt e o, R N e 2 VI, il SN - ORI 3 Cnigend ity ! R odia 2 R

F NEW FILEI tSTORAGE ERROR :
; i
tNEW ACCESS RIGHTS s
DETERMINE l4
; NUMBER |
4 OF BLOCKS 5
3.3.1 ;
: . I
3 STORAGE ERRORJ/ NEW ;
- - ACCESS ¥
RIGHTS {
y BLOCK ADDRESSJ‘ NEW ACCESS
1 RIGHTS
NUMBER OF BLOCK)
5 BLOCKS /P NEW FILE I ADDRESS '
NAME
IDENTIFY ESTABLISH WRITE TO
3 FREE BLOCK ACCESS FILE
& 3.3.2 RIGHTS DIRECTORY
- 3.3.4
4
| BLOCK
A N, ADDRESS
& BLOCK ID\\ 4
|
| CONNECT
] FREE
BLOCKS
' 3.3.3

{ 261

oot A AN

v kil

1

USER
DIRECTORY
INFO

s A AN SRS KO U A PN FNt N s s S e < -

1

LINK APPROVAL

DETERMINE
USER

DIRECTORY
3.6.1

REQUESTED
FILE NAME

P

USER
LINK

LINK
USER TO
OWNER

3.6.3

oo KRN s

\USER LINK

OWNER LINK

\

WRITE
LINRKS TO
DIRECTORY

o M N b s A LA | Sl S SO O NI IO Wt 555 54 S AU IO .50+ TRFE 7 45 v 3 e e W e AN A g i e WA BT s R N iy bt BV e I

A <o g e

x ;
9 FILE PARAMETERS t ' ;
8 3 FILE DESCRIPTOR :
1 STARTING BLOCK ;
3 CREATE E
p: FILE i
g DESCRIPTOR i
‘ .
£ CENTRAL FILE '
1 BLOCK i
f \’ A\ STARTING
e STATUS BLOCK
4 STATUS {7 DEVICE i
- DESCRIPTOR
| I X ADDRESS %
EXISTING FILE
BLOCK PARAMETERS
LOCATION
\LOCAL BLOCK
. READ TEST CREATE CREATE ;
¥ FILE BLOCK CENTRAL FILE LOCAL FILFE CENTRAL FILE z
| | STATUS BLOCK BLOCK BLOCK :
-E 3'802 3.8.1 3.803
B
=
|
!
z
E |
|
f
5
Y. |
263

e

s At SR RS 5 ~ s B il o AR A, ORI ¢ A LI .- b A st AL i | L6 0 o sy 2

{

- oh et N K et N LT

CLOSE FILE
REQUEST
CLOSE
FILE
LOCATION OF «/
CENTRAL FILE BLOCK
1 CURRENT
\ STATUS
CLOSE FILE LOCATION
REQUEST CURRENT 1 OF CENTRAL
STATUS © | FILE BLOCK
DELETE UPDATE DELETE
LOCAL FILE STATUS CENTRAL FILE
BLOCK 4.2 BLOCK
4.1 4.3
CURRENT
STATU s\’ f
g\ CENTRAL
STATUS FILE BLOCK
WRITE TO

CENTRAL FILE

BLOCK

264

- ATt

. o s R M O oo N0 5 S S A A2 e Yo B GG 030 Md SiBEz T T AL S ORE e e G L LS e st

SERVICED

MESSAGE

1/0 REQUEST3 I REQUEST
ERROR HESSAGEt

PERFORM
INPUT/OUTPUT

/P REQUEST
1/0 \\ NOTICE
REQUEST '

DEVICE REQUEST REQUEST
PARAMETEi// NOTICEx X SERVICED
MESSAGE
PHYSICAL ERROR DEVICE
DEVICEf MESSAGE PARAMETER

{

MAP LOGICAL CHECK I/O INITIATE EXECUTE
TO PHYSITCAL PARAMETERS REQUEST DEVICE
DEVICE 4 2 HANDLER
1 3

DEVICE PARAMEIFRS

R T e

!

!

RFEQUEST NOTICE

INITIATE I/0

REQUEST

p DEVICE /P
i PARAMETFRS

/

BLOCK

f BII_-gCK

ASSEMBLE
- REQUEST
‘ BLOCK

2.1

1 BLOCK
ID

lREQUEST
NOTICE

NOTIFY
DEVICE

HANDLER
2.2

\\ BLOCK

ADD TO
DEVICE
SERVICE LIST
2.3

S gy > s re gt g

il M. A T TR T SN el oailn’s -SRI, AN P e P 5l 45 WAIDE st 5t -

REQUEST
NOTICE

BLOCK

I

REQUEST| PROCESS
NOTICE NOTIFICATION

EXECUTE
DEVICE
HANDLER

N

COMPLETE
TRANSFER

REMOVE
REQUEST
3.1 BLOCK DATA \
D TRANSLATED
/ J‘ OUTPUT \1 INPUT
DATA DATA
INPUT BLOCK
DATA 1D OUTPUT%\
DATA
INITIATE DELETE TRANSLATE]
1/0 FROM LIST DATA
3.2 3.3 3.4

NOTIFY
PROCESS
2.6

TRANSFER
" COMPLETE

\ DATA
TRANSLATED

TRANSFER
DATA
3.5

R

PN

i NG, S AR £ A S S N FAT0 TG4 3\ g SV I, DY BN N e g T —
REQUEST | NEW JOB
MANAGE
PROCESSES
—+
NEW JOB q\ 1/0
/f \hREQUEST
J/ SWAP
NEW REQUEST
PROCESS
1SWAP OUT
REQUEST
CREATE EXECUTE EXECUTE
PROCESS SCHEDULER MEMORY
1 2 SWAP
3
]
: 26 8

PRt adiievs RNt S £ i S, I Ml 1.0 155 . Al ol o S - wvon b3 i pe e we - ek i i P

i
1
4

: NEW I INEw

e PROCESS JOB J

CREATE

: PROCESS |

3 1

p]

4 !

NEW
| NEW ,/° PROCESS ;
| JOB w\ N,
JOB TYPE ‘i;; JOB

3 TYPE %

: ENVIRONMENT

3 DETERMINE INITIALIZE ASSIGN SCHEDULE

8 MEMORY PROCESS PRIORITY NEW

4 BOUNDS 1.2 1.3 PROCESS

= 1.1 1.4

& t PRIORITY

8 MEMORY REQUEST N\ i

; MEMORY BOUNDS ™™ INITIAD PROCESS i
: STATE =

B REQUEST

| MEMORY WRITE TO

_‘ PROCESS

: DESCRI PTOR i

. 269

y SWAP REQUEST 1
4 NEW PROCESS

5 EXECUTE
SCHEDULER
NEW PROCESS SWAP
REQUEST U
RUN PROCESS PROCESS
'f SWAP CONDITION
REQUIREMENT
d’ PROCESS
CONDITION | RUN PROCESS
DETERMINE DETERMINE ENTER
STATUS RUN PROCESS
2.1 PROCESS QUEUES
2.2 2.3

}

NEW PROCESS

RUN PROCESS 1D

DETERMINE
PROCESS
STATUS

UNRUNNABLE
PROCESS ID

NEW PROCES%/F
PROCESS

m J/

!

DETERMINE
PROCESS - PREEMPTED BLOCKED
STATUS ,ﬂ PROCESS PROCESS
2.1.1
3UNRUNNABLE
RUNNABLE RUNNABLE STATUS
PROCESS STATUS
UNRUNNABLE

ID ’p

PROCESS ID

CHANGE CHANGE
STATUS TO STATUS TO
RUNNABLE UNRUNNABLE

2.1.2 2.1.3

PROCESS CONDITION

UNRUNNABLE

STATUS

\\RUNNABLE STATUS

PROCESS
g CONDITIONS

REQUEST
QUEUE

ACTION
2.1.5

RUN 1
PROCESS '
ID ;

CHANGE
STATUS TQ
RUNNING
2.1.4

e

M N g B, e e ey ek e

SWAP IN REQUEST t

RUNNING
PROCESS
QUEUE
PRIORITY
SWAP OUT QUEUE I
REQUIREMENf?P PRIORITY

QUEUE
2.2.1

DETERMINE

PRIORITY

READY
QUEUE
PRIORITY

WAIT
QUEUE
PRIORITY

READ
QUEUE

PRIORITIES

R i L N N

RUN PROCESSt I

DETERMINE

QUEUE
STATUS

SWAP OUT REQUIREMENT

\%FUN PROCESS
q\?UEUE STATUS

SWAP IN
\b REQUEST

DETERMINE
STATUS
2,2,2

DETERMINE
LOCATION
2.2.3

o R o s S TS MY ol St e S L i b)

QUEUE REQUEST,-?

PROCESS INFO o

DELETE
FROM

QUEUE

2,3.2

.

TIPS
o

I

QUEUE REQUEST

ENTER
PROCESSOR
QUEUES

§ SELECT |
] QUEUE ' t
3 ACTION READY
, 2.3.1 QUEUE
§ /f 4’ INFO
PROCESS INFO
QUEUE

WAIT
QUEUE
i INFO

QUEUE

DETERMINE
QUEUE
2.3.3

READY QUEUE
I
oy INFO

ADD TO
READY
QUEUE
2.3.5

WAIT QUEUE
Q\ INFO

ADD TO
WAIT
QUEUE
2.3.4

e AN

et A NI, REAS SO v, AN s, * SO 54+ I g VNN MR SN L1
- oghap g an = N - o

i I/0 REQUEST

{

SWAP OUT REQUIREMENT 1 SWAP REQUEST

SWAP
-% "PROCESS
3 SWAP IN \%I/O REQUEST
: REQUEST
/P \\SWAP IN INFO
® SWAP OUT SWAP OUT
, REQUIREMENT Jﬂ SWAP \\ INFO
f APPROVAL 1
SWAP :
APPROVALJ/ SWAP OUT | SWAP OUT SWAP IN :
REQUEST t INFO INFO e
DETERMINE EXECUTE EXECUTE INITIATE
& MEMORY SWAP OUT SWAP IN SWAP 1/0
¢ AVAILABLE 3.3 3.2 3.4
f‘ 3.1
|
}
MEMORY REQUEST
MEMORY w\
BOUNDS
DETERMINE
AVAILABLE
MEMORY

¢ Tald

274

a3 M . e e N SRR . A e Ay > S Sowacrml Rt JETHP ST o0 ' PERCVRCPRE SCI S e e e . . [- e

PROCESS 1 MEMORY
NEEDS BOUNDS
MANAGE ?
MEMORY
PROCESS
£ NEEDS /o
3. PROCESS DEALLOCATE
3 SIZE A "\ REQUEST
.
b | DEALLOCATE =
. REQUEST / 3
. ‘ §
DETERMINE 1 DEALLOCATE !
NEED MEMORY H
1 PROCESS 5 3
BOUNDS ' 3
PROCESS PROCESS 1 PROCESS \
SIZE MAP BOUNDS MEMORY BOUNDS
* 4
B SELECT ASSIGN RECORD
. AREA AREA PROCESS
. | 2 3 BOUNDS
' 4
.‘

£
7 1
*

275

o T R B o T R I

PROCESS I I PROCESS
STZE MAPD

SELECT
FREE AREA

PROCESS J‘ '
SIZE /P NO FIT ACCEPTED
MESSAGE Q‘ FREE AREA

ACCEPTED d’ J/
FREE AREA PROCESS MAP

COMPARE UPDATE
AREA WITH FREE AREA
SIZE TABLE

2.2 2.3

~—F
FREE AREA SIZE

EXAMINE
FREE AREA
2.1

5

Y a4 > e P ithas o i I S AR, I, RGP M AP s aals b ST R Tu 3 P et S pa o M N B e i A N s

4 |
g PROCESS ID
DEALLOCATE]

MEMORY SPACE .

i

3 ' \‘ AREA

' PARAMETERS 3
PROCESS IDf 1 .

2
L AREA AREA
PARAMETERS j PARAMETERS

MATCH UPDATE ADJUST
! ENTRY WITH MEMORY FREE
| PROCESS TABLE .| space ;
- 5.1 5.2 5.3 :

3
@ N
-
:
)
] y
i
3
9
-
! .
Y. 1

i

277

Sl o s I 5 NN MR- B0 AT w53 Al 2010 A+ 0 - - aaiaartemris i gty B <ow St AR oo sl o e 2T o

PROCESS 1
STATUS
3 DISPATCH
1 PROCESS
3 PROCESS /) . PROCESS
3 STATUS ID
k. J/ K\
o PROCESS d/ PROCESS PROCESS
4 DESCRIPTOR 1D DESCRIPTOR
:j
i TEST FOR UPDATE RECORD
g CURRENT PROCESSOR PROCESSOR
L. | PROCESS STATE STATE
4 1.1 1.2 1.3
fp! RUNNABLE PROCESSOR
; PROCESSq\ Jﬂ STATES
» STATES
N A
I
| 1
i {
!
| %
|
i
|
|
T
13
\I \
' 278

3

~'AD=AL1S 61%

UNCLASSIFIED
4

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO=--ETC F/6 9/2

DESIGN AND DEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F=<ETC(U)
C 81 M S ROSS '

AF!T/GCS/EE/BID-I“ NL

END
et
o

AR ek 5 M R ina’ g

INTERRUPT ID/p

SOURCE ID
by

IDENTIFY
INTERRUPT
SOURCE

3.2

SOURCE ID

HIGHEST 4’
PRIORITY

/

DETERMINE
PRIORITY
3.3

!

I

INTERRUPT ID

EXECUTE
INTERRUPT
HANDLER

PROCESS STATUS CHANGE

\ LOCATION

PROCESS STATUS
gbCHANGE

SERVICE
INTERRUPT
3.6
CURRENT HIGHEST
PRIORITY LOCATION PRIORITY

!

DISABLE
LOWER
INTERRUPTS
_3.4

3 DISABLE
ME SSAGE

N

DETERMINE
INTERRUPT
ROUTINE
LOCATION

3.5

R T ST

R sy . W AU o

Vita

Captain Mitchell §S. Ross was born on Febuary 28, 1952
in Stillwater, Oklahoma. In 1970, he graduated concurrently
from Central High School and The Willard-Graff Vocational
Technical School (Electronic Technology) in Springfield,
Missouri. He earned a Bachelor of Science degree at
Southwest Missouri University with a major in Industrial
Technology and minor in Mathematics. Following graduation
he attended the Signal Officer Course at Fort Gordon,
Georgia and was assigned to the 11th Signal Brigade, 40th
Signal Battalion, Fort Huachuca, Arizona. From December
1976 to December 1977 he was the Aide-de-camp to the Deputy
Commanding General, Army Communications Command. He was
subsequently assigned to the 86th Signal Battalion as a
Microwave and Tropospheric Radio Officer. In December 1978,
he became the Commanding Officer of the 19th Signal Company,
Electronic Maintenance and Supply Facility (EMSF) for the
11th Signal Brigade. He entered the Air Force Institute in

June 1980,

Permanent Address: 2115 Mt. Vernon

Springfield, Missouri

280

»

&
1
{
?
3
¢
s
i

U S o Y

SECURITY CLASSIFICATION OF THIS PAGE (When Datas Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

. REPORY NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT’S CATALOG NUMBER

AFIT/GCS/EE/81D-14 At Al

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

DESIGN AND DEVELOPMENT OF A MS THESIS
MULTIPROGRAMMING OPERATING SYSTEM
FOR SIXTEEN BIT MICROPROCESSORS 6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mitchell S. Ross, Captain, USA

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT)
Wright-Patterson AFB, OH 45 33

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Institute of Technology (AFIT X December 1981
Wright-Patterson AFB, OH 45433 TS JWOER OF PAGES

T4, MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

182, DECEL ASSI FICATION/ DOWNGRADING

e ——
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public releases distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Bisck 20, If di/terent from Report)

WOLAVER Professional Development
f“ Research ond Alr Fu:oo lnstutute of Technolozy (ATC)

=7 necesanry and hhmlly by Block niem? 7,

. KEY WORDS (Contfnue i
Operating Systems
Timesharing
Man-Machine Interface
Multiprogramming
Interactive Computing

20. ABSTRACT (Continue on reverse side Il necessary and Identity by block number)

gsée reverse

DD , 5%y 1473 woimion oF 1 Nov 6813 oRsoLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

19. SUPPLEMENTARY NOTES
Approved for public relea mwwm 17 Dean for Research andn‘/g/’

e S oot g - 4 -

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

o B e AL e

‘b
“

20.

Abstract

A timesharing operating system for the Air Force
Institute of Technology Digital Epgineering Laboratory
was designed and developed with emphasis on the human
interface. The functional requirements were developed
by a thorough literature search on the user perceptions
of computer operating systems and the justification for
the success of popular systems such as UNIX, TENEX, and
UCSD Pascal. Structured Analysis was used to produce a
gstructured specification for the hierarchy of the operat-
ing system. The structured specification includes an
operating system shell which allows a flexible user
command structure, a hierarchical file structure,
device independent input/output management, a scheduler
which supports swapping, a general memory management
scheme, and a system nucleus consisting of process
dispatching, interrupt handling and interprocess com-
munications. Weinberg's methodology, which is based
on Yourdon and Constantine's Transform Analysis and
Transaction Analysis Techniques, was used to develop
the software design which consists of a set of module
structure charts. The module structure charts are
supported by data flow diagrams and a data dictionary.

Because of the depth needed to complete such a
project, this first effort is intended to provide a
bagis for further expansion and development. Hence,
the design is a broad overall approach aimed at 16-bit
microprocessors and not detailed sufficiently for full
implementation.

SECUTTY CLASRIPICATION OF Tite PAGEWhen Dota Enteran)

e

